Center-of-momentum frame

Last updated

In physics, the center-of-momentum frame (also zero-momentum frame or COM frame) of a system is the unique (up to velocity but not origin) inertial frame in which the total momentum of the system vanishes. The center of momentum of a system is not a location (but a collection of relative momenta/velocities: a reference frame). Thus "center of momentum" means "center-of-momentum frame" and is a short form of this phrase. [1]

Contents

A special case of the center-of-momentum frame is the center-of-mass frame: an inertial frame in which the center of mass (which is a physical point) remains at the origin. In all COM frames, the center of mass is at rest, but it is not necessarily at the origin of the coordinate system.

In special relativity, the COM frame is necessarily unique only when the system is isolated.

Properties

General

The center of momentum frame is defined as the inertial frame in which the sum of the linear momenta of all particles is equal to 0. Let S denote the laboratory reference system and S′ denote the center-of-momentum reference frame. Using a galilean transformation, the particle velocity in S′ is

where

is the velocity of the mass center. The total momentum in the center-of-momentum system then vanishes:

Also, the total energy of the system is the minimal energy as seen from all inertial reference frames.

Special relativity

In relativity, the COM frame exists for an isolated massive system. This is a consequence of Noether's theorem. In the COM frame the total energy of the system is the rest energy , and this quantity (when divided by the factor c2, where c is the speed of light) gives the rest mass (invariant mass) of the system:

The invariant mass of the system is given in any inertial frame by the relativistic invariant relation

but for zero momentum the momentum term (p/c)2 vanishes and thus the total energy coincides with the rest energy.

Systems that have nonzero energy but zero rest mass (such as photons moving in a single direction, or equivalently, plane electromagnetic waves) do not have COM frames, because there is no frame in which they have zero net momentum. Due to the invariance of the speed of light, a massless system must travel at the speed of light in any frame, and always possesses a net momentum. Its energy is—for each reference frame—equal to the magnitude of momentum multiplied by the speed of light:

Two-body problem

An example of the usage of this frame is given below – in a two-body collision, not necessarily elastic (where kinetic energy is conserved). The COM frame can be used to find the momentum of the particles much easier than in a lab frame: the frame where the measurement or calculation is done. The situation is analyzed using Galilean transformations and conservation of momentum (for generality, rather than kinetic energies alone), for two particles of mass m1 and m2, moving at initial velocities (before collision) u1 and u2 respectively. The transformations are applied to take the velocity of the frame from the velocity of each particle from the lab frame (unprimed quantities) to the COM frame (primed quantities): [1]

where V is the velocity of the COM frame. Since V is the velocity of the COM, i.e. the time derivative of the COM location R (position of the center of mass of the system): [2]

so at the origin of the COM frame, R' = 0, this implies

The same results can be obtained by applying momentum conservation in the lab frame, where the momenta are p1 and p2:

and in the COM frame, where it is asserted definitively that the total momenta of the particles, p1' and p2', vanishes:

Using the COM frame equation to solve for V returns the lab frame equation above, demonstrating any frame (including the COM frame) may be used to calculate the momenta of the particles. It has been established that the velocity of the COM frame can be removed from the calculation using the above frame, so the momenta of the particles in the COM frame can be expressed in terms of the quantities in the lab frame (i.e. the given initial values):

notice the relative velocity in the lab frame of particle 1 to 2 is

and the 2-body reduced mass is

so the momenta of the particles compactly reduce to

This is a substantially simpler calculation of the momenta of both particles; the reduced mass and relative velocity can be calculated from the initial velocities in the lab frame and the masses, and the momentum of one particle is simply the negative of the other. The calculation can be repeated for final velocities v1 and v2 in place of the initial velocities u1 and u2, since after the collision the velocities still satisfy the above equations: [3]

so at the origin of the COM frame, R = 0, this implies after the collision

In the lab frame, the conservation of momentum fully reads:

This equation does not imply that

instead, it simply indicates the total mass M multiplied by the velocity of the centre of mass V is the total momentum P of the system:

Similar analysis to the above obtains

where the final relative velocity in the lab frame of particle 1 to 2 is

See also

Related Research Articles

Angular momentum Physical quantity

In physics, angular momentum is the rotational analog of linear momentum. It is an important quantity in physics because it is a conserved quantity—the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Motorcycles, frisbees and rifled bullets all owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes have spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system but does not uniquely determine it.

Kinetic energy Energy of a moving physical body

In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest. Formally, a kinetic energy is any term in a system's Lagrangian which includes a derivative with respect to time.

Momentum Conserved physical quantity related to the motion of a body

In Newtonian mechanics, linear momentum, translational momentum, or simply momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is

Torque Physics concept

In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment, moment of force, rotational force or turning effect, depending on the field of study. It represents the capability of a force to produce change in the rotational motion of the body. The concept originated with the studies by Archimedes of the usage of levers. Just as a linear force is a push or a pull, a torque can be thought of as a twist to an object around a specific axis. Torque is defined as the product of the magnitude of the force and the perpendicular distance of the line of action of a force from the axis of rotation. The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.

Equations of motion Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

Moment of inertia Scalar measure of the rotational inertia with respect to a fixed axis of rotation

The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation.

Invariant mass Motion-independent mass, equals total mass when at rest

The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, it is a characteristic of the system's total energy and momentum that is the same in all frames of reference related by Lorentz transformations. If a center-of-momentum frame exists for the system, then the invariant mass of a system is equal to its total mass in that "rest frame". In other reference frames, where the system's momentum is nonzero, the total mass of the system is greater than the invariant mass, but the invariant mass remains unchanged.

Hamiltonian mechanics Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

Four-momentum

In special relativity, four-momentum is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is

Rigid body dynamics

In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.

The word mass has two meanings in special relativity: invariant mass is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy.

Magnetic moment Physical quantity; measured in ampere square metre

The magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include: loops of electric current, permanent magnets, elementary particles, various molecules, and many astronomical objects.

Boltzmann equation Equation of statistical mechanics

The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium, devised by Ludwig Boltzmann in 1872. The classic example of such a system is a fluid with temperature gradients in space causing heat to flow from hotter regions to colder ones, by the random but biased transport of the particles making up that fluid. In the modern literature the term Boltzmann equation is often used in a more general sense, referring to any kinetic equation that describes the change of a macroscopic quantity in a thermodynamic system, such as energy, charge or particle number.

In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.

In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy to invariant mass and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum. It can be written as the following equation:

In physics and engineering, mass flux is the rate of mass flow. Its SI units are kg m−2 s−1. The common symbols are j, J, q, Q, φ, or Φ, sometimes with subscript m to indicate mass is the flowing quantity. Mass flux can also refer to an alternate form of flux in Fick's law that includes the molecular mass, or in Darcy's law that includes the mass density.

In classical mechanics, Euler's laws of motion are equations of motion which extend Newton's laws of motion for point particle to rigid body motion. They were formulated by Leonhard Euler about 50 years after Isaac Newton formulated his laws.

Lagrangian mechanics Formulation of classical mechanics

Introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in 1788 from his work Mécanique analytique, Lagrangian mechanics is a formulation of classical mechanics and is founded on the stationary action principle.

Relativistic Lagrangian mechanics Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

Relativistic angular momentum Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

References

  1. 1 2 Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN   978-0-470-01460-8
  2. Classical Mechanics, T.W.B. Kibble, European Physics Series, 1973, ISBN   0-07-084018-0
  3. An Introduction to Mechanics, D. Kleppner, R.J. Kolenkow, Cambridge University Press, 2010, ISBN   978-0-521-19821-9