Center for Detectors

Last updated
Center director Donald Figer is best known for this 1997 false-color image of the Pistol star and nebula. Pistol star and nebula.jpg
Center director Donald Figer is best known for this 1997 false-color image of the Pistol star and nebula.

The Center for Detectors (CfD) is a Rochester Institute of Technology College of Science academic research center. The CfD, established in January 2010 by Dr. Donald Figer, began as an expansion of the Rochester Imaging Detector Laboratory. Its mission is to enable scientific discovery, national security, better living, and commercial innovation through the design and development of advanced photon detectors and associated technology.

Contents

The CfD designs, develops, and implements new advanced sensor technologies through collaboration with academic researchers, industry engineers, government scientists, and university students. The mission of the CfD is to enable scientific discovery, national security, better living, and commercial innovation through the design and development of advanced photon detectors and associated technology in a broad array of applications (e.g. astrophysics, biomedical imaging, Earth system science, and inter-planetary travel).

Research

Color image of M13, the Great Cluster in Hercules, taken by CfD personnel using the Teledyne Hawaii 4RG SiPIN detector (HyViSI). This was the first demonstration of this device in an astronomical application. Ciber focus test.jpg
Color image of M13, the Great Cluster in Hercules, taken by CfD personnel using the Teledyne Hawaii 4RG SiPIN detector (HyViSI). This was the first demonstration of this device in an astronomical application.

The CfD uses a multi-disciplinary approach, spanning the many branches of engineering, imaging science, physics and astronomy. Research pillars of the CfD include, Detectors and Instrumentation, Observational Astrophysics, Wideband Gap Materials, Nanostructures, and Silicon Photonics.

Detectors and Instrumentation

A primary objective of the CfD is the development of advanced detectors and instrumentation for cross-disciplinary applications. Major research projects include the development of detectors that can sense individual photons, cover very large areas of the sky, and have excellent sensitivity in ultraviolet and infrared wavelengths. These devices have specifications that make them ideal for the next generation of large ground-based and space-based astronomical telescopes, for applications such as finding another Earth and determining the nature of dark energy and dark matter. The CfD is also developing two dimensional arrays of micromirrors for astronomical applications.

Observational Astrophysics

This area includes observational research programs spanning the nearby universe of stars and the interstellar medium within the Galaxy to cosmological observations of the large-scale structure of the universe, including studies of fundamental physics. Projects include works that aim to elucidate the nature of the cosmos on the largest scales and most distant times. Other programs include the identification of the upper mass limit to stars and the search for young massive star clusters in the Galaxy. It also includes leadership roles on major future astronomy telescope panels to specify the detector requirements needed in order to satisfy mission science requirements.

Wideband Gap Materials

The Semiconductor Photonics and Electronics Group develops III-V and III-Nitride semiconductors for photonic, optoelectronic, and electronic devices as promising candidates for next generation communication and illumination systems.

Nanostructures

The Epitaxially-Integrated Nanoscale Systems Laboratory in the CfD develops nanostructures using epitaxy of III-V semiconductors on 2-D nanosheets. The research focuses on the growth of various nanostructures, including nanowires and nanofins, by metal-organic chemical vapor deposition through a synthesis process known as selective chemical etching for room temperature benchtop fabrication of flexible III-V nanostructure based optoelectronic and photovoltaic devices.

Silicon Photonics

The CfD Integrated Photonics Group develops photonic technology for broad application in commercial, defense, and scientific applications. It also leads a program for integrated photonics education. This area of research is focused on novel silicon photonic devices with the goal of realizing high performance computing communication, and sensing systems that leverage high speed, bandwidth, and sensitivity to light.

The Center for Detectors benefits from employees that come from a diverse range of academic programs and professional occupations. The CfD staff includes professors, engineers, and students (undergraduate, masters, and PhD).

CfD is grant-funded and has been awarded more than $40M in external funding since 2006. Primary sponsors include NASA, National Science Foundation, and the Gordon and Betty Moore Foundation. Additional sources of funding include Thermo Fisher Scientific, NASA Jet Propulsion Laboratory, ITT Excelis, and Smithsonian Astrophysical Observatory.

Outreach and Communications

Undergraduate researchers at the RIT Center for Detectors come from over a dozen different majors and “check their major at the door” because they will become expert in a new type of major in the CfD – the major of “solving real-world research problems.” Authentic research experiences at the Center for Detectors put students clearly in the critical path of externally-funded projects, a high risk/high reward gambit that has proven to burnish the capabilities of CfD students who have gone out in the world and made outsized impact, such as at Ball Aerospace and SpaceX.  Students work in multidisciplinary teams to apply what they know, teach each other and seek out resources necessary for advancing their project. Another key feature in undergraduate research experiences at the center—and what makes them “real”—is the fact that the students are not doing the research to earn a grade or a certain number of credit hours. The “CfD-experience” trains students to navigate research problems with creativity and resourcefulness.

CfD team members have been published in many journals and publications. CfD members were published in over 35 papers in journals such as The Astrophysical Journal and Optics Express in 2018. [1] CfD research was highlighted in popular publications such as the Scientific American and Forbes online. In 2018, CfD members served as expert commentators in articles Astronomy Magazine and New Scientist and as expert authors of strategic planning documents for NASA. For a complete list of CfD member publications go here: CfD Publications.

Equipment and Facilities

The Center's detector testing system uses custom-built cylindrical vacuum cryogenic dewars. RIT PHOTON-RIDL L6A7306.jpg
The Center's detector testing system uses custom-built cylindrical vacuum cryogenic dewars.

The Center for Detectors (CfD) is located in Engineering Hall (Building 17) at the Rochester Institute of Technology. The CfD headquarters consists of 7,000 square feet of office and research laboratory space. The lab space includes the Rochester Imaging Detector Laboratory, the Lobozzo Photonics and Optical Characterization Laboratory, the Integrated Photonics Laboratory, the Laboratory for Experimental Cosmology, the Laboratory for Advanced Instrumentation Research (LAIR), the Quantum Imaging and Information Laboratory, and the Electrical and Optical Characterization Lab for LED devices.

This laser spot projector is used in the Center for Detectors. The system is mounted on a 3D motorized stage that produces a small point source for measurements of intrapixel sensitivity. CfD Spot Projector.JPG
This laser spot projector is used in the Center for Detectors. The system is mounted on a 3D motorized stage that produces a small point source for measurements of intrapixel sensitivity.

Facilities within CfD include a permanent clean room, ESD stations, vacuum pumping systems, liquid and closed-cycle cryogenic dewars, optical benches, flow tables, light sources, UV-IR monochromators, thermal control systems, cryogenic motion control systems, single-photon detector systems, a cryogenic optoelectronic probe station, vibration testing stations, a suborbital rocket payload assembly area, power supplies, general lab electronics, and data reduction computers. In addition to these dedicated facilities, the CfD has access to facilities within the Semiconductor and Microsystems Fabrication Laboratory (SMFL) and other areas across the RIT campus.

Related Research Articles

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a light-sensitive semiconductor diode. It produces current when it absorbs photons.

<span class="mw-page-title-main">Photonics</span> Technical applications of optics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

<span class="mw-page-title-main">Indium phosphide</span> Chemical compound

Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors.

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

SPIE is an international not-for-profit professional society for optics and photonics technology, founded in 1955. It organizes technical conferences, trade exhibitions, and continuing education programs for researchers and developers in the light-based fields of physics, including: optics, photonics, and imaging engineering. The society publishes peer-reviewed scientific journals, conference proceedings, monographs, tutorial texts, field guides, and reference volumes in print and online. SPIE is especially well-known for Photonics West, one of the laser and photonics industry's largest combined conferences and tradeshows which is held annually in San Francisco. SPIE also participates as partners in leading educational initiatives, and in 2020, for example, provided more than $5.8 million in support of optics education and outreach programs around the world.

<span class="mw-page-title-main">Infrared detector</span>

An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic (photodetectors).

<span class="mw-page-title-main">ICFO</span>

ICFO – The Institute of Photonic Sciences is a research center devoted to the science and technology of light. Located in Castelldefels, ICFO was created in 2002 by the Government of Catalonia and the Technical University of Catalonia.

A photonic integrated circuit (PIC) or integrated optical circuit is a microchip containing two or more photonic components which form a functioning circuit. This technology detects, generates, transports, and processes light. Photonic integrated circuits utilize photons as opposed to electrons that are utilized by electronic integrated circuits. The major difference between the two is that a photonic integrated circuit provides functions for information signals imposed on optical wavelengths typically in the visible spectrum or near infrared (850–1650 nm).

A gas detector is a device that detects the presence of gases in an area, often as part of a safety system. A gas detector can sound an alarm to operators in the area where the leak is occurring, giving them the opportunity to leave. This type of device is important because there are many gases that can be harmful to organic life, such as humans or animals.

<span class="mw-page-title-main">Ferdinand-Braun-Institut</span>

The Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) is a research institute, which is a member of the Gottfried Wilhelm Leibniz Scientific Community. The institute is located in Berlin at the Wissenschafts- und Wirtschaftsstandort Adlershof (WISTA), its research activity is applied science in the fields of III-V electronics, photonics, integrated quantum technology and III-V technology

The International Conference on Physics of Light–Matter Coupling in Nanostructures (PLMCN) is a yearly academic conference on various topics of semiconductor science and nanophotonics.

Arthur J. Nozik is a researcher at the National Renewable Energy Lab (NREL). He is also a professor at the University of Colorado, which is located in Boulder. He researches semiconductor quantum dots at the National Renewable Energy Laboratory, and is a chemistry professor at the University of Colorado. He also does research for the advancement of solar energy, for which he won the Intergovernmental Renewable Energy Organization (IREO) Award for Science and Technology in 2009.

<span class="mw-page-title-main">Superconducting nanowire single-photon detector</span> Type of single-photon detector

The superconducting nanowire single-photon detector is a type of optical and near-infrared single-photon detector based on a current-biased superconducting nanowire. It was first developed by scientists at Moscow State Pedagogical University and at the University of Rochester in 2001. The first fully operational prototype was demonstrated in 2005 by the National Institute of Standards and Technology (Boulder), and BBN Technologies as part of the DARPA Quantum Network.

The Microsystems Technology Office (MTO) is one of seven current organizational divisions of DARPA, an agency responsible for the development of new technology for the United States Armed Forces. It is sometimes referred to as the Microelectronics Technology Office.

High energy X-ray imaging technology (HEXITEC) is a family of spectroscopic, single photon counting, pixel detectors developed for high energy X-ray and gamma ray spectroscopy applications.

Manijeh Razeghi is an Iranian-American scientist in the fields of semiconductors and optoelectronic devices. She is a pioneer in modern epitaxial techniques for semiconductors such as low pressure metalorganic chemical vapor deposition (MOCVD), vapor phase epitaxy (VPE), molecular beam epitaxy (MBE), GasMBE, and MOMBE. These techniques have enabled the development of semiconductor devices and quantum structures with higher composition consistency and reliability, leading to major advancement in InP and GaAs based quantum photonics and electronic devices, which were at the core of the late 20th century optical fiber telecommunications and early information technology.

Deborah J. Jackson is an American physicist and Program Manager at the National Science Foundation, and a Fellow of the National Society of Black Physicists. She was the first African American woman to receive a Ph.D. in physics from Stanford University. She is an expert on "electromagnetic phenomena" with a research and development career that spans the full range of the electromagnetic spectrum from materials studies using hard x-ray wavelengths, to nonlinear optics and spectroscopy in the near-infrared, to the fielding of radio frequency instrumentation on deep space missions such as Cassini and Mars Observer.

<span class="mw-page-title-main">Oleg Tolbanov</span> Russian physicist

Oleg Petrovich Tolbanov is a Russian physicist, specialist in solid state physics, solid-state electronics and physical materials science. He is the author of more than 160 scientific articles in the Web of Science database, including: monographs, 5 textbooks, more than 60 inventions.

Shouleh Nikzad is an Iranian-American electronic engineer and research scientist at the Jet Propulsion Laboratory. She leads the Advanced Detector Arrays, Systems, and Nanoscience Group. Her research considers ultraviolet and low-energy particle detectors, nanostructure devices and novel spectrometers. Nikzad is a Fellow of the American Physical Society, the National Academy of Inventors and SPIE.

Yu-Hwa Lo is a physicist, engineer, academic and researcher. He is a Professor of Electrical and Computer Engineering at University of California at San Diego (UCSD).

References

  1. "Annual Report 2021" (PDF). Center for Detectors.