Centipede mathematics

Last updated

Centipede mathematics is a term used, sometimes derogatorily, [1] to describe the generalisation and study of mathematical objects satisfying progressively fewer and fewer restrictions. This type of study is likened to studying how a centipede behaves when its legs are removed one by one.

Algebraic structures between magmas and groups. Magma to group4.svg
Algebraic structures between magmas and groups.

The term is attributed to Polish mathematician Antoni Zygmund. Zygmund is said to have described the metaphor of the centipede thus: "You take a centipede and pull off ninety-nine of its legs and see what it can do." [2] Thus, Zygmund has been known by many mathematicians as the "Centipede Surgeon".

The study of semigroups is cited as an example of doing centipede mathematics. [3] One starts with the notion of an abelian group. First delete the commutativity restriction to obtain the concept of a group. The restriction of existence of inverses is then removed. This produces a monoid. If one now removes the restriction regarding the existence of identity, the resulting object turns out to be a semigroup. Still more legs can be removed. If the associativity restriction is also discarded one gets a magma or a groupoid. The restrictions that define an abelian group may be removed in different orders also. The study of ternary ring has been cited as an example of centipede mathematics. The progressive removal of axioms of Euclidean geometry and studying the resulting geometrical objects also illustrate the methodology of centipede mathematics. [4]

The following quote summarises the value and usefulness of the concept: "The term ‘centipede mathematics’ is new to me, but its practice is surely of great antiquity. The binomial theorem (tear off the leg that says that the exponent has to be a natural number) is a good example. A related notion is the importance of good notation and the importance of overloading, aka abuse of language, to establish useful analogies." — Gavin Wraith. [3]

Related Research Articles

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

In mathematics, the inverse limit is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any category although their existence depends on the category that is considered. They are a special case of the concept of limit in category theory.

<span class="mw-page-title-main">Semigroup</span> Algebraic structure consisting of a set with an associative binary operation

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.

<span class="mw-page-title-main">Group theory</span> Branch of mathematics that studies the properties of groups

In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

<span class="mw-page-title-main">Homological algebra</span> Branch of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed.

In mathematics, the composition operator takes two functions, and , and returns a new function . Thus, the function g is applied after applying f to x.

In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.

This article gives some very general background to the mathematical idea of topos. This is an aspect of category theory, and has a reputation for being abstruse. The level of abstraction involved cannot be reduced beyond a certain point; but on the other hand context can be given. This is partly in terms of historical development, but also to some extent an explanation of differing attitudes to category theory.

In category theory, a branch of mathematics, the opposite category or dual categoryCop of a given category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself. In symbols, .

<span class="mw-page-title-main">Pathological (mathematics)</span> Mathematical phenomena whose properties are counterintuitive

In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved or nice. These terms are sometimes useful in mathematical research and teaching, but there is no strict mathematical definition of pathological or well-behaved.

In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras, and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

The language of mathematics has a vast vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject. Jargon often appears in lectures, and sometimes in print, as informal shorthand for rigorous arguments or precise ideas. Much of this uses common English words, but with a specific non-obvious meaning when used in a mathematical sense.

Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by mathematicians such as John Knopfmacher and Arne Beurling in the twentieth century.

<span class="mw-page-title-main">Zero object (algebra)</span> Algebraic structure with only one element

In algebra, the zero object of a given algebraic structure is, in the sense explained below, the simplest object of such structure. As a set it is a singleton, and as a magma has a trivial structure, which is also an abelian group. The aforementioned abelian group structure is usually identified as addition, and the only element is called zero, so the object itself is typically denoted as {0}. One often refers to the trivial object since every trivial object is isomorphic to any other.

The study of manifolds combines many important areas of mathematics: it generalizes concepts such as curves and surfaces as well as ideas from linear algebra and topology. Certain special classes of manifolds also have additional algebraic structure; they may behave like groups, for instance. In that case, they are called Lie Groups. Alternatively, they may be described by polynomial equations, in which case they are called algebraic varieties, and if they additionally carry a group structure, they are called algebraic groups.

<span class="mw-page-title-main">Section (category theory)</span>

In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism. In other words, if and are morphisms whose composition is the identity morphism on , then is a section of , and is a retraction of .

<span class="mw-page-title-main">Abstract algebra</span> Branch of mathematics

In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are sets with specific operations acting on their elements. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in pedagogy.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

References

  1. Edward Kmett (2013-11-08). "Procrustean Mathematics - School of Haskell". www.schoolofhaskell.com. Retrieved 2022-08-01.
  2. Steven Krantz (2005). Mathematical Apocrypha Redux: More Stories and Anecdotes of Mathematicians and the Mathematical. Cambridge University Press. p. 6. ISBN   9780883855546.
  3. 1 2 "Centipede mathematics". nLab. September 29, 2016. Retrieved 10 August 2014.
  4. John Baez (February 9, 2000). "This Week's Finds in Mathematical Physics (Week 145)" . Retrieved 10 August 2014.