Cerastocytin

Last updated

Cerastocytin is a thrombin-like serine protease in snake venom.

Contents

Function overview

Snake venom contains toxins capable of causing death to the reptile's prey in many various ways. Most of the toxins fall into one of the two categories: [1] elapid (mainly neurotoxic) or viperid (mainly hemotoxic) toxins depending on the immediate cause of death. [2] Elapid snakes cause prey to die from asphyxiation because the dominating neurotoxins inhibit cholinesterase activity, thereby leading to paralysis of all muscles, including the diaphragm. [3] The immediate cause of death after bites of viperid snakes is a sudden drop in blood pressure or stroke as the hemotoxins, mostly prevalent in this type of venom, induce either extensive coagulation or bleeding. [4] While snakes are categorized in this manner, venom of either type may include a number of toxic enzymes involved in neurotoxicity, hemotoxicity, nutrient digestion and other functions necessary to make the prey available for consumption.

While all hemotoxins leading to clot formation induce platelet aggregation, they do so in various ways. For example, botrocetin, found in the venom of Bothrops jararaca , activates von Willebrand factor (vWF) by inducing it to bind to platelet glycoprotein Ib (GPIb) thereby providing the surface for initial platelet aggregation. [5] In contrast, cerastocytin and cerastotin (from the venom of Cerastes cerastes ), as well as thrombocytin (from Bothrops atrox ) [6] and many others, are serine proteases that function in a way very similar to thrombin. Like thrombin, these proteases are capable of inducing platelet aggregation, and some even fibrin clot formation, at nanomolar concentrations.

Structural comparison to thrombin

Cerastocytin, like most other serine proteases, [7] thrombin specifically, has three distinguishing features: the hydrophobic pocket, the positive surface and the catalytic triad. Additionally, the tertiary structure of cerastocytin is maintained by disulfide bridges similar to those formed in other serine proteases. This structural similarity results of cerastocytin's ability to clot platelets and hydrolyze fibrinogen at the concentration of 5 nM, closely mimics the activity of thrombin at 1nM. [8]

Hydrophobic pocket

Cerastocytin contains a hydrophobic domain that binds fibrinopeptide A and in the 3-D confirmation looks very similar to the analogous region of alpha-thrombin. Despite these functional and structural similarities, cerastocytin possesses a distinct amino acid sequence Ile98, Val99, Tyr172, Trp215, which forms the hydrophobic pocket when combined with the 90-loop (Phe90 Val99). The peptides that serve this purpose in thrombin (Leu99, Ile174, Trp215) are known as the aryl binding site and appear to be conserved in many different species.

However, the variation in this sequence within the hydrophobic pocket of cerastocytin suggests that the precise amino acid composition is not relevant to fibrinogen binding ability of the protease, as long as there is a non-polar region to interact with the hydrophobic part of the substrate. On the other hand, the fact that Trp215 is the only residue conserved in thrombinsand cerastocytin suggests the great significance of this one position for fibrinogen cleavage. This is confirmed by the observations of thrombocytin, which lacks the Trp215 residue, participates in platelet aggregation, but not in fibrinogenolytic activity. [8]

Positive surface

Just as with the hydrophobic pocket, the sequence of the positively charged surface of cerastocytin differs in its amino acid sequence from that of thrombin, however, the 3-D structure and functionality remain the same. In cerastocytin, the cationic surface is formed by the dominance of basic amino acids between residues Tyr67-Arg80: two Arg, one Lys, two His, and one Asp. [8] Similarly in thrombin four Arg, one Lys, one His and two Glu occupy the same residue stretch, albeit of different sequence, between Arg67-Ile80. The positive loops formed by these sequences protrude from the globular structures of the proteases. Since this exosite was shown to be involved in the platelet aggregating activity of thrombin, a similar function could be proposed for this structure in cerastocytin. [9]

Catalytic triad

Unlike the hydrophobic pocket and the positively charged exosite, the catalytic triad sequence is precisely conserved in both thrombins from different species andcerastocytin: [8] His57, Asp102, Ser195. [10] This conformity once again emphasizes the importance of these residues for hydrolytic activity.

Disulfide bridges

The disulfide bridge between Cys42-Cys58 forms part of the fibrinogen recognition subsite S’ that is recognized as crucial for thrombin's ability to hydrolyze alpha- and beta-chains. Mutations within the S’ site have shown a decrease in the thrombin-facilitated fibrinogenolysis. However, the lack of a Cys, and therefore disulfide bridge in that region, in cerastocytin has no effect on fibrin clot formation or platelet aggregation. [8]

Comparison to some other venom proteases

Cerastotin is a more potent platelet proaggregant than cerastocytin because at a given amount it is just as active as an equal amount of crude venom. Pure cerastocytin, on the other hand, induces platelet aggregation six times slower than an equivalent volume of venom. However, while cerastotin is more kinetically favored than cerastocytin, it can only bind platelets in the presence of fibrinogen. Furthermore, its receptor binding site is not the same as that of thrombin. This is confirmed by the fact that cerastotin was still active after a thrombin desensitization test and was not affected by the competitive inhibitors of thrombin. [11]

Inhibition

The effects of various inhibitors are not always consistent for thrombin and cerastocytin. Just as with thrombin, cerastocytin-activated platelet aggregation is inhibited by chlorpromazine, theophylline and mepacrine. However, neither hirudin, nor antithrombin III have any effect on cerastocytin-mediated clot formation even though both have been observed to inhibit thrombin-facilitated platelet clot formation. This data suggests that cerastocytin has distinct sites for platelet and fibrinopeptide binding because the two functions could be inhibited independently of each other. Additionally, some antibodies (such as LJIblO) that have been observed to inhibit thrombin, interfered with cerastocytin activity, but not with cerastotin. This data reinforces the concept that there a multiple toxins that are capable of producing similar physiological results via very different activation mechanisms. [11]

Related Research Articles

<span class="mw-page-title-main">Protease</span> Enzyme that cleaves other proteins into smaller peptides

A protease is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in numerous biological pathways, including digestion of ingested proteins, protein catabolism, and cell signaling.

<span class="mw-page-title-main">Thrombin</span> Enzyme involved in blood coagulation in humans

Thrombin is a serine protease, an enzyme that, in humans, is encoded by the F2 gene. During the clotting process, prothrombin is proteolytically cleaved by the prothrombinase enzyme complex to form thrombin. Thrombin in turn acts as a serine protease that converts soluble fibrinogen into insoluble strands of fibrin, as well as catalyzing many other coagulation-related reactions.

<span class="mw-page-title-main">Serine protease</span> Class of enzymes

Serine proteases are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. They are found ubiquitously in both eukaryotes and prokaryotes. Serine proteases fall into two broad categories based on their structure: chymotrypsin-like (trypsin-like) or subtilisin-like.

<span class="mw-page-title-main">Snake venom</span> Highly modified saliva containing zootoxins

Snake venom is a highly toxic saliva containing zootoxins that facilitates in the immobilization and digestion of prey. This also provides defense against threats. Snake venom is injected by unique fangs during a bite, whereas some species are also able to spit venom.

<span class="mw-page-title-main">Hirudin</span>

Hirudin is a naturally occurring peptide in the salivary glands of blood-sucking leeches that has a blood anticoagulant property. This is essential for the leeches' habit of feeding on blood, since it keeps a host's blood flowing after the worm's initial puncture of the skin.

<span class="mw-page-title-main">Disintegrin</span> Proteins from viper venom inhibiting platelets aggregation

Disintegrins are a family of small proteins from viper venoms that function as potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion.

<span class="mw-page-title-main">Convulxin</span> Snake venom toxin

Convulxin is a snake venom toxin found in a tropical rattlesnake known as Crotalus durissus terrificus. It belongs to the family of hemotoxins, which destroy red blood cells or, as is the case with convulxin, induce blood coagulation.

Ancrod is a defibrinogenating agent derived from the venom of the Malayan pit viper. Defibrinogenating blood produces an anticoagulant effect. Ancrod is not approved or marketed in any country. It is a thrombin-like serine protease.

Direct thrombin inhibitors (DTIs) are a class of medication that act as anticoagulants by directly inhibiting the enzyme thrombin. Some are in clinical use, while others are undergoing clinical development. Several members of the class are expected to replace heparin and warfarin in various clinical scenarios.

<span class="mw-page-title-main">Calciseptine</span> Neurotoxin

Calciseptine (CaS) is a natural neurotoxin isolated from the black mamba Dendroaspis p. polylepis venom. This toxin consists of 60 amino acids with four disulfide bonds. Calciseptine specifically blocks L-type calcium channels, but not other voltage-dependent Ca2+ channels such as N-type and T-type channels.

<span class="mw-page-title-main">Batroxobin</span>

Batroxobin, also known as reptilase, is a snake venom enzyme with Venombin A activity produced by Bothrops atrox and Bothrops moojeni, venomous species of pit viper found east of the Andes in South America. It is a hemotoxin which acts as a serine protease similarly to thrombin, and has been the subject of many medical studies as a replacement of thrombin. Different enzymes, isolated from different species of Bothrops, have been called batroxobin, but unless stated otherwise, this article covers the batroxobin produced by B. moojeni, as this is the most studied variety.

Venom-induced consumption coagulopathy (VICC) is a medical condition caused by the effects of some snake and caterpillar venoms on the blood. Important coagulation factors are activated by the specific serine proteases in the venom and as they become exhausted, coagulopathy develops. Symptoms are consistent with uncontrolled bleeding. Diagnosis is made using blood tests that assess clotting ability along with recent history of envenomation. Treatment generally involves pressure dressing, confirmatory blood testing, and antivenom administration.

Platelet membrane glycoproteins are surface glycoproteins found on platelets (thrombocytes) which play a key role in hemostasis. When the blood vessel wall is damaged, platelet membrane glycoproteins interact with the extracellular matrix.

<span class="mw-page-title-main">Coagulation factor II receptor</span> Mammalian protein found in humans

Proteinase-activated receptor 1 (PAR1) also known as protease-activated receptor 1 or coagulation factor II (thrombin) receptor is a protein that in humans is encoded by the F2R gene. PAR1 is a G protein-coupled receptor and one of four protease-activated receptors involved in the regulation of thrombotic response. Highly expressed in platelets and endothelial cells, PAR1 plays a key role in mediating the interplay between coagulation and inflammation, which is important in the pathogenesis of inflammatory and fibrotic lung diseases. It is also involved both in disruption and maintenance of endothelial barrier integrity, through interaction with either thrombin or activated protein C, respectively.

Direct thrombin inhibitors (DTIs) are a class of anticoagulant drugs that can be used to prevent and treat embolisms and blood clots caused by various diseases. They inhibit thrombin, a serine protease which affects the coagulation cascade in many ways. DTIs have undergone rapid development since the 90's. With technological advances in genetic engineering the production of recombinant hirudin was made possible which opened the door to this new group of drugs. Before the use of DTIs the therapy and prophylaxis for anticoagulation had stayed the same for over 50 years with the use of heparin derivatives and warfarin which have some well known disadvantages. DTIs are still under development, but the research focus has shifted towards factor Xa inhibitors, or even dual thrombin and fXa inhibitors that have a broader mechanism of action by both inhibiting factor IIa (thrombin) and Xa. A recent review of patents and literature on thrombin inhibitors has demonstrated that the development of allosteric and multi-mechanism inhibitors might lead the way to a safer anticoagulant.

Venombin A is an enzyme. This enzyme catalyses the following chemical reaction

Atrolysin A is an enzyme that is one of six hemorrhagic toxins found in the venom of western diamondback rattlesnake. This endopeptidase has a length of 419 amino acid residues. The metalloproteinase disintegrin-like domain and the cysteine-rich domain of the enzyme are responsible for the enzyme's hemorrhagic effects on organisms via inhibition of platelet aggregation.

<span class="mw-page-title-main">Anti-thrombin aptamers</span> Oligonucleotides which recognize the exosites of human thrombin

Anti-thrombin aptamers are G-quadruplex-bearing oligonucleotides, which recognizes the exosites of human thrombin. The first anti-thrombin aptamer, TBA, was generated through via SELEX technology in 1992 by L.C. Bock, J.J. Toole and colleagues. A second thrombin-binding aptamer, HD22, recognizes thrombin exosite II and was discovered in 1997 by NeXstar. These two aptamers have high affinity and good specificity and have been widely studied and used for the development of aptamer-based therapeutics and diagnostics.

Venom in medicine is the medicinal use of venoms for therapeutic benefit in treating diseases.

Toxin BF9 is a Kunitz-type peptide, coming from snakes, with a dual functionality. The toxin is able to inhibit both serine proteases and potassium channels.

References

  1. "The Reptipage: Snake venom". reptilis.net.
  2. "elapid". Britannica Online Encyclopedia.
  3. Mirajkar KK, More S, Gadag JR (2005). "Isolation and purification of a neurotoxin from Bungarus caeruleus (common Indian krait) venom: biochemical changes induced by the toxin in rats". J Basic Clin Physiol Pharmacol. 16 (1): 37–52. doi:10.1515/jbcpp.2005.16.1.37. PMID   16187485.
  4. Bazaa A, Marrakchi N, El Ayeb M, Sanz L, Calvete JJ (November 2005). "Snake venomics: comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina". Proteomics. 5 (16): 4223–35. doi:10.1002/pmic.200402024. PMID   16206329.
  5. Read MS, Smith SV, Lamb MA, Brinkhous KM (August 1989). "Role of botrocetin in platelet agglutination: formation of an activated complex of botrocetin and von Willebrand factor". Blood. 74 (3): 1031–5. PMID   2473809.
  6. Niewiarowski S, Kirby EP, Brudzynski TM, Stocker K (August 1979). "Thrombocytin, a serine protease from Bothrops atrox venom. 2. Interaction with platelets and plasma-clotting factors". Biochemistry. 18 (16): 3570–7. doi:10.1021/bi00583a021. PMID   476069.
  7. Nelson, D.; Cox, M. (2005). Lehninger Principles of Biochemistry (4th ed.). W.H. Freeman. ISBN   9780716743392.
  8. 1 2 3 4 5 Dekhil H, Wisner A, Marrakchi N, El Ayeb M, Bon C, Karoui H (September 2003). "Molecular cloning and expression of a functional snake venom serine proteinase, with platelet aggregating activity, from the Cerastes cerastes viper". Biochemistry. 42 (36): 10609–18. doi:10.1021/bi034790b. PMID   12962484.
  9. Krishnaswamy S (January 2005). "Exosite-driven substrate specificity and function in coagulation". J Thromb Haemost. 3 (1): 54–67. doi:10.1111/j.1538-7836.2004.01021.x. PMID   15634266.
  10. Berg, J.; Tymoczko, J.; Stryer, L. (2002). Biochemistry (5th ed.). W H Freeman. ISBN   0-7167-3051-0.
  11. 1 2 Marrakchi N, Barbouche R, Guermazi S, Bon C, el Ayeb M (February 1997). "Procoagulant and platelet-aggregating properties of cerastocytin from Cerastes cerastes venom". Toxicon. 35 (2): 261–72. doi:10.1016/s0041-0101(96)00116-x. PMID   9080583.