Charge transport mechanisms are theoretical models that aim to quantitatively describe the electric current flow through a given medium.
Crystalline solids and molecular solids are two opposite extreme cases of materials that exhibit substantially different transport mechanisms. While in atomic solids transport is intra-molecular, also known as band transport, in molecular solids the transport is inter-molecular, also known as hopping transport. The two different mechanisms result in different charge mobilities.
In disordered solids, disordered potentials result in weak localization effects (traps), which reduce the mean free path, and hence the mobility, of mobile charges. Carrier recombination also decreases mobility.
Parameter | Band transport (ballistic transport) | Hopping transport |
---|---|---|
Examples | crystalline semiconductors | disordered solids, polycrystalline and amorphous semiconductors |
Underlying mechanism | Delocalized molecular wavefunctions over the entire volume | Transition between localized sites via tunnelling (electrons) or overcoming potential barriers (ions) |
Inter-site distance | Bond length (less than 1 nm) | Typically more than 1 nm |
Mean free path | Larger than the inter-site distance | Inter-site distance |
Mobility | Typically larger than 1 cm2/(V⋅s); independent of electric field; decreases with increasing temperature | Typically smaller than 0.01 cm2/(V⋅s); depends on electric field; increases with increasing temperature |
Starting with Ohm's law and using the definition of conductivity, it is possible to derive the following common expression for current as a function of carrier mobility μ and applied electric field E:
The relationship holds when the concentration of localized states is significantly higher than the concentration of charge carriers, and assuming that hopping events are independent from each other.
Generally, the carrier mobility μ depends on temperature T, on the applied electric field E, and the concentration of localized states N. Depending on the model, increased temperature may either increase or decrease carrier mobility, applied electric field can increase mobility by contributing to thermal ionization of trapped charges, and increased concentration of localized states increases the mobility as well. Charge transport in the same material may have to be described by different models, depending on the applied field and temperature. [1]
Carrier mobility strongly depends on the concentration of localized states in a non-linear fashion. [2] In the case of nearest-neighbour hopping, which is the limit of low concentrations, the following expression can be fitted to the experimental results: [3]
where is the concentration and is the localization length of the localized states. This equation is characteristic of incoherent hopping transport, which takes place at low concentrations, where the limiting factor is the exponential decay of hopping probability with inter-site distance. [4]
Sometimes this relation is expressed for conductivity, rather than mobility:
where is the concentration of randomly distributed sites, is concentration independent, is the localization radius, and is a numerical coefficient. [4]
At high concentrations, a deviation from the nearest-neighbour model is observed, and variable-range hopping is used instead to describe transport. Variable range hopping can be used to describe disordered systems such as molecularly-doped polymers, low molecular weight glasses and conjugated polymers. [3] In the limit of very dilute systems, the nearest-neighbour dependence is valid, but only with . [3]
At low carrier densities, the Mott formula for temperature-dependent conductivity is used to describe hopping transport. [3] In variable hopping it is given by:
where is a parameter signifying a characteristic temperature. For low temperatures, assuming a parabolic shape of the density of states near the Fermi level, the conductivity is given by:
At high carrier densities, an Arrhenius dependence is observed: [3]
In fact, the electrical conductivity of disordered materials under DC bias has a similar form for a large temperature range, also known as activated conduction:
High electric fields cause an increase in the observed mobility:
It was shown that this relationship holds for a large range of field strengths. [5]
The real and imaginary parts of the AC conductivity for a large range of disordered semiconductors has the following form: [6] [7]
where C is a constant and s is usually smaller than unity. [4]
Similar to electron conduction, the electrical resistance of thin-film electrolytes depends on the applied electric field, such that when the thickness of the sample is reduced, the conductivity improves due to both the reduced thickness and the field-induced conductivity enhancement. The field dependence of the current density j through an ionic conductor, assuming a random walk model with independent ions under a periodic potential is given by: [8]
where α is the inter-site separation.
Characterization of transport properties requires fabricating a device and measuring its current-voltage characteristics. Devices for transport studies are typically fabricated by thin film deposition or break junctions. The dominant transport mechanism in a measured device can be determined by differential conductance analysis. In the differential form, the transport mechanism can be distinguished based on the voltage and temperature dependence of the current through the device. [9]
Transport mechanism | Effect of electric field | Functional form | Differential form |
---|---|---|---|
Fowler-Nordheim tunneling (field emission) a | |||
Thermionic emission b | Lowers barrier height | ||
Arrhenius equation c | |||
Poole–Frenkel hopping | Assists thermal ionization of trapped charges | ||
Thermally-assisted tunneling d |
^a is the measured current, is the applied voltage, is the effective contact area, is the Planck constant, is the barrier height, is the applied electric field, is the effective mass. |
^b is Richardson's constant, is the temperature, is the Boltzmann constant, and are the vacuum the relative permittivity, respectively. |
^c is the activation energy. |
^d is an elliptical function; is a function of , the applied field and the barrier height. |
It is common to express the mobility as a product of two terms, a field-independent term and a field-dependent term:
where is the activation energy and β is model-dependent. For Poole–Frenkel hopping, for example,
Tunneling and thermionic emission are typically observed when the barrier height is low. Thermally-assisted tunneling is a "hybrid" mechanism that attempts to describe a range of simultaneous behaviours, from tunneling to thermionic emission. [10] [11]
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution, while the parameter is the variance. The standard deviation of the distribution is . A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
Electrical resistivity is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a 1 m3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.
In solid state physics, a particle's effective mass is the mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. One of the results from the band theory of solids is that the movement of particles in a periodic potential, over long distances larger than the lattice spacing, can be very different from their motion in a vacuum. The effective mass is a quantity that is used to simplify band structures by modeling the behavior of a free particle with that mass. For some purposes and some materials, the effective mass can be considered to be a simple constant of a material. In general, however, the value of effective mass depends on the purpose for which it is used, and can vary depending on a number of factors.
The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.
A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.
In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility.
The Seebeck coefficient of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material, as induced by the Seebeck effect. The SI unit of the Seebeck coefficient is volts per kelvin (V/K), although it is more often given in microvolts per kelvin (μV/K).
In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
In physics, the Wiedemann–Franz law states that the ratio of the electronic contribution of the thermal conductivity (κ) to the electrical conductivity (σ) of a metal is proportional to the temperature (T).
In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables. Note that a limit distribution needs to exist, which requires regularity conditions on the tail of the distribution. Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables.
The folded normal distribution is a probability distribution related to the normal distribution. Given a normally distributed random variable X with mean μ and variance σ2, the random variable Y = |X| has a folded normal distribution. Such a case may be encountered if only the magnitude of some variable is recorded, but not its sign. The distribution is called "folded" because probability mass to the left of x = 0 is folded over by taking the absolute value. In the physics of heat conduction, the folded normal distribution is a fundamental solution of the heat equation on the half space; it corresponds to having a perfect insulator on a hyperplane through the origin.
The word electricity refers generally to the movement of electrons, or other charge carriers, through a conductor in the presence of a potential difference or an electric field. The speed of this flow has multiple meanings. In everyday electrical and electronic devices, the signals travel as electromagnetic waves typically at 50%–99% of the speed of light in vacuum. The electrons themselves move much more slowly. See drift velocity and electron mobility.
Variable-range hopping is a model used to describe carrier transport in a disordered semiconductor or in amorphous solid by hopping in an extended temperature range. It has a characteristic temperature dependence of
Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.
In probability theory and statistics, the normal-inverse-gamma distribution is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.
In solid-state physics, the Poole–Frenkel effect is a model describing the mechanism of trap-assisted electron transport in an electrical insulator. It is named after Yakov Frenkel, who published on it in 1938, extending the theory previously developed by H. H. Poole.
Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.
The modified lognormal power-law (MLP) function is a three parameter function that can be used to model data that have characteristics of a log-normal distribution and a power law behavior. It has been used to model the functional form of the initial mass function (IMF). Unlike the other functional forms of the IMF, the MLP is a single function with no joining conditions.
Photoconductive polymers absorb electromagnetic radiation and produce an increase of electrical conductivity. Photoconductive polymers have been used in a wide variety of technical applications such as Xerography (electrophotography) and laser printing. Electrical conductivity is usually very small in organic compounds. Conductive polymers usually have large electrical conductivity. Photoconductive polymer is a smart material based on conductive polymer, and the electrical conductivity can be controlled by the amount of radiation.
Time resolved microwave conductivity (TRMC) is an experimental technique used to evaluate the electronic properties of semiconductors. Specifically, it is used to evaluate a proxy for charge carrier mobility and a representative carrier lifetime from light-induced changes in conductance. The technique works by photo-generating electrons and holes in a semiconductor, allowing these charge carriers to move under a microwave field, and detecting the resulting changes in the electric field. TRMC systems cannot be purchased as a single unit, and are generally "home-built" from individual components. One advantage of TRMC over alternative techniques is that it does not require direct physical contact to the material.