Chris Quigg

Last updated
Chris Quigg
Dr Chris Quigg FNAL 2013-04-12.jpg
Chris Quigg, giving a lecture at Fermilab.
BornDecember 15, 1944 (1944-12-15) (age 79)
NationalityAmerican
Alma mater Yale University
University of California, Berkeley
Known for Collider phenomenology
Awards Sakurai Prize (2011)
Scientific career
Institutions Fermilab
Stony Brook University
Thesis Two Reggeon exchange contributions to hadron scattering amplitudes at high energy [1]  (1970)
Doctoral advisor J. D. Jackson

Chris Quigg (born December 15, 1944) is an American theoretical physicist at the Fermi National Accelerator Laboratory (Fermilab). He graduated from Yale University in 1966 and received his Ph.D. in 1970 under the tutelage of J. D. Jackson at the University of California, Berkeley. He has been an associate professor at the Institute for Theoretical Physics, State University of New York, Stony Brook, and was head of the Theoretical Physics Department at Fermilab from 1977 to 1987.

Contents

Contributions to physics

Quigg's contributions range over many topics in particle physics. With Benjamin Lee and H. B. Thacker in 1977 he identified the uppermost theoretical mass scale for the Higgs boson. [2] [3] In 1984 he coauthored "Supercollider Physics" (with Estia Eichten, Kenneth Lane and Ian Hinchliffe), which has strongly influenced the quest for future discoveries at hadron colliders, such as the Fermilab Tevatron, the SSC, and the LHC at CERN. [4] He is also author of Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. [5]

He has made many other significant contributions to the study of the spectroscopy of heavy-light mesons, signatures for the production of heavy quarks and quarkonium, and the study of ultrahigh-energy neutrino interactions. He is an international lecturer and public speaker, and has been Editor of the Annual Review of Nuclear and Particle Science .

He was a consultant to WQED and the National Academy of Sciences for the Infinite Voyage television series and a featured speaker in the companion Discovery Lectures on college campuses. He gave the first Carl Sagan Memorial Lecture in the series Cosmos Revisited at the Smithsonian Institution in Washington. He was featured in The Ultimate Particle, a road movie of particle physics broadcast on ARTE in France and Germany. [6]

With Robert N. Cahn, he wrote Grace in All Simplicity, subtitled "Beauty, Truth, and Wonders on the Path to the Higgs Boson and New Laws of Naturea", a popular book on the history and development of the Standard Model of particle physics,

Awards and honors

Quigg was a recipient of the Alfred P. Sloan Foundation Research Fellowship, 1974–1978, and was elected a fellow of the American Physical Society in 1983. In 2011 Quigg with Estia Eichten, Ian Hinchliffe, and Kenneth Lane won the J. J. Sakurai Prize for Theoretical Particle Physics "For their work, separately and collectively, to chart a course of the exploration of TeV scale physics using multi-TeV hadron colliders" [7]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Steven Weinberg</span> American theoretical physicist (1933–2021)

Steven Weinberg was an American theoretical physicist and Nobel laureate in physics for his contributions with Abdus Salam and Sheldon Glashow to the unification of the weak force and electromagnetic interaction between elementary particles.

<span class="mw-page-title-main">Top quark</span> Type of quark

The top quark, sometimes also referred to as the truth quark, is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and DØ experiments at Fermilab.

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are
W+
,
W
, and
Z0
. The
W±
 bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The
Z0
 boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The
W±
 bosons have a magnetic moment, but the
Z0
has none. All three of these particles are very short-lived, with a half-life of about 3×10−25 s. Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics.

<span class="mw-page-title-main">Higgs mechanism</span> Mechanism that explains the generation of mass for gauge bosons

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature. The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries can never be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.

In particle physics, preons are hypothetical point particles, conceived of as sub-components of quarks and leptons. The word was coined by Jogesh Pati and Abdus Salam, in 1974. Interest in preon models peaked in the 1980s but has slowed, as the Standard Model of particle physics continues to describe physics mostly successfully, and no direct experimental evidence for lepton and quark compositeness has been found. Preons come in four varieties: plus, anti-plus, zero, and anti-zero. W bosons have six preons, and quarks and leptons have only three.

<span class="mw-page-title-main">Benjamin W. Lee</span> Korean-born American theoretical physicist

Benjamin Whisoh Lee, or Ben Lee, was a Korean- American theoretical physicist. His work in theoretical particle physics exerted great influence on the development of the standard model in the late 20th century, especially on the renormalization of the electro-weak model and gauge theory.

Michael Edward Peskin is an American theoretical physicist. He is currently a professor in the theory group at the SLAC National Accelerator Laboratory.

The J. J. Sakurai Prize for Theoretical Particle Physics, is presented by the American Physical Society at its annual April Meeting, and honors outstanding achievement in particle physics theory. The prize consists of a monetary award (US$10,000), a certificate citing the contributions recognized by the award, and a travel allowance for the recipient to attend the presentation. The award is endowed by the family and friends of particle physicist J. J. Sakurai. The prize has been awarded annually since 1985.

<span class="mw-page-title-main">Kenneth Lane (physicist)</span> American physicist

Kenneth Douglas Lane is an American theoretical particle physicist and professor of physics at Boston University. Lane is best known for his role in the development of extended technicolor models of physics beyond the Standard Model.

<span class="mw-page-title-main">François Englert</span> Belgian theoretical physicist

François, Baron Englert is a Belgian theoretical physicist and 2013 Nobel Prize laureate.

The timeline of particle physics lists the sequence of particle physics theories and discoveries in chronological order. The most modern developments follow the scientific development of the discipline of particle physics.

Estia Joseph Eichten, is an American theoretical physicist, of the Fermi National Accelerator Laboratory (Fermilab). He received his Ph.D. in 1972 from the MIT Center for Theoretical Physics, where he was a student of Roman Jackiw's, and was associate professor of physics at Harvard before joining the Fermilab Theoretical Physics Department in 1982.

<span class="mw-page-title-main">Christopher T. Hill</span> American theoretical physicist

Christopher T. Hill is an American theoretical physicist at the Fermi National Accelerator Laboratory who did undergraduate work in physics at M.I.T., and graduate work at Caltech. Hill's Ph.D. thesis, "Higgs Scalars and the Nonleptonic Weak Interactions" (1977) contains one of the first detailed discussions of the two-Higgs-doublet model and its impact upon weak interactions.

<span class="mw-page-title-main">Higgs boson</span> Elementary particle involved with rest mass

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to mass. It is also very unstable, decaying into other particles almost immediately upon generation.

The 1964 PRL symmetry breaking papers were written by three teams who proposed related but different approaches to explain how mass could arise in local gauge theories. These three papers were written by: Robert Brout and François Englert; Peter Higgs; and Gerald Guralnik, C. Richard Hagen, and Tom Kibble (GHK). They are credited with the theory of the Higgs mechanism and the prediction of the Higgs field and Higgs boson. Together, these provide a theoretical means by which Goldstone's theorem can be avoided. They show how gauge bosons can acquire non-zero masses as a result of spontaneous symmetry breaking within gauge invariant models of the universe.

In theoretical physics, a mass generation mechanism is a theory that describes the origin of mass from the most fundamental laws of physics. Physicists have proposed a number of models that advocate different views of the origin of mass. The problem is complicated because the primary role of mass is to mediate gravitational interaction between bodies, and no theory of gravitational interaction reconciles with the currently popular Standard Model of particle physics.

<span class="mw-page-title-main">David B. Cline</span> American particle physicist

]

References

  1. "Ph.D. and M.Sc. students supervised by John David Jackson" (PDF). www-theory.lbl.gov. 5 April 2004.
  2. Benjamin W. Lee; C. Quigg; H. B. Thacker (1977). "Strength of Weak Interactions at Very High Energies and the Higgs Boson Mass". Physical Review Letters. 38 (16): 883–885. Bibcode:1977PhRvL..38..883L. doi:10.1103/PhysRevLett.38.883.
  3. Benjamin W. Lee; C. Quigg; H. B. Thacker (1977). "Weak interactions at very high energies: The role of the Higgs-boson mass". Physical Review. D16 (5): 1519–1531. Bibcode:1977PhRvD..16.1519L. doi:10.1103/PhysRevD.16.1519.
  4. E. Eichten; I. Hinchliffe; K. Lane; C. Quigg (1984). "Supercollider Physics". Reviews of Modern Physics. 56 (4): 579–707. Bibcode:1984RvMP...56..579E. doi:10.1103/RevModPhys.56.579.
  5. Chris Quigg (1997). Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Advanced Book Classics. Westview Press. ISBN   978-0-201-32832-5.
  6. "Chris Quigg, Brief Biography". lutece.fnal.gov, Fermi National Accelerator Laboratory.
  7. American Physical Society - J. J. Sakurai Prize Winners