Chromatin bridge | |
---|---|
DAPI staining allows for visualization of deoxyribonucleic acid portions of the two daughter cells. The thin "string-like" DNA connecting them is defined as a chromatin bridge. | |
Specialty | Pathology |
Chromatin bridge is a mitotic occurrence that forms when telomeres of sister chromatids fuse together and fail to completely segregate into their respective daughter cells. Because this event is most prevalent during anaphase, the term anaphase bridge is often used as a substitute. After the formation of individual daughter cells, the DNA bridge connecting homologous chromosomes remains fixed. As the daughter cells exit mitosis and re-enter interphase, the chromatin bridge becomes known as an interphase bridge. These phenomena are usually visualized using the laboratory techniques of staining and fluorescence microscopy. [1] [2]
The faithful inheritance of genetic information from one cellular generation to the next heavily relies on the duplication of deoxyribonucleic acid (DNA), as well as the formation of two identical daughter cells. This complicated cellular process, known as mitosis, depends on a multitude of cellular checkpoints, signals, interactions and signal cascades for accurate and faithful functioning. Cancer, characterized by uncontrollable cell growth mechanisms and high tendencies for proliferation and metastasis, is highly prone to mitotic mistakes. As a result, several forms of chromosomal aberrations occur, including, but not limited to, binucleated cells, multipolar spindles and micronuclei. [3] Chromatin bridges may serve as a marker of cancer activity.[ citation needed ]
Chromatin bridges may form by any number of processes wherein chromosomes remain topologically entangled during mitosis. One way in which this may occur is the failure to resolve joint molecules formed during homologous recombination mediated DNA repair, a process that ensures that replicated chromosomes are intact before chromosomes are segregated during cell division. In particular, genetic studies have demonstrated that the loss of the enzymes BLM (Bloom's Syndrome Helicase) or FANCM each result in a dramatic increase in the number of chromatin bridges. This occurs because loss of these genes causes an increase in chromosome fusions, either in an end-to-end manner or through topological entrapment (e.g., catenation or unresolved DNA cross-links), have also been associated with chromatin bridge formation. When viewed under a fluorescence microscope and immunostained for cytological markers, these chromatin bridges appear to emanate from either centromeres, telomeres or DNA crosslinks (as marked by FANCD2). [4]
Chromatin bridges can be viewed utilizing a laboratory technique known as fluorescence microscopy. Fluorescence is the process that involves excitation of a fluorophore (a molecule with the ability to emit fluorescent light in the visible light spectrum) using ultraviolet light. After the fluorophore becomes chemically excited by the presence of UV light, it emits visible light at a specific wavelength, producing different colors. Fluorophores may be added as a molecular tag to different portions of a cell. DAPI is a fluorophore that specifically binds to DNA and fluoresces blue. In addition, immunofluorescence may be used as a laboratory technique to tag cells with specific fluorophores using antibodies, immune proteins created by B lymphocytes. Antibodies are utilized by the immune system in the identification and binding of foreign substances. Tubulin is a monomer of microtubules that compose the cellular cytoskeleton. The antibody anti-tubulin specifically binds to these tubulin monomeric subunits. A fluorophore can be chemically attached to the anti-tubulin antibody, which then fluoresces green. Numerous antibodies may bind to microtubules in order to amplify the fluorescent signal. Fluorescence microscopy allows for the observation of different components of the cell against a dark background for high intensity and specificity.[ citation needed ]
Chromatin bridges are easiest and most readily visible when observing chromosomes stained with DAPI. DNA bridges appear to be a blue, "string-like" connection between two separated daughter cells. This effect is created when sticky ends of chromosomes remain connected to one another, even after mitosis. A chromatin bridge may also be observed using indirect immunofluorescence, in which anti-tubulin emits a green coloration when bound to microtubules in the presence of UV light. Because microtubules maintain the positions of the chromosomes during mitosis, they appear to be densely pinched between the two dividing, daughter cells. Chromatin bridges can be difficult to locate utilizing fluorescence microscopy, as this phenomenon is not incredibly abundant and tend to appear faint against the dark background.[ citation needed ]
Recently, chromatin bridges have been implied as a diagnostic marker for cancer, while having been linked to tumorigenesis in humans. [5] This premise is based on the fact that as the mitotic cell divides and the daughter cells move further apart, stress on the DNA bridge leads to breakages in the chromosome at random points. As previously stated, the disruptions in the chromosome may lead to single chromosome mutations, including deletion, duplication and inversion, among others. This instability, defined as frequent changes in chromosomal structure and number, may be the basis of the development of cancer. While the frequency of chromatin bridges may be greater in tumor cells relative to normal cells, it may not be practical to utilize this phenomenon as a diagnostic tool. The process of staining and mounting sample cells using indirect immunofluorescence is time-consuming. Even though DAPI staining is quick, neither laboratory technique can guarantee the presence of the bridges under the fluorescence microscope. The rarity of chromatin bridges, even in cancerous cells, makes this phenomenon difficult to be widely accepted diagnostic marker for cancer.[ citation needed ]
Mitosis is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis is an equational division which gives rise to genetically identical cells in which the total number of chromosomes is maintained. Mitosis is preceded by the S phase of interphase and is followed by telophase and cytokinesis, which divide the cytoplasm, organelles, and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis altogether define the mitotic phase of a cell cycle—the division of the mother cell into two daughter cells genetically identical to each other.
Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there are two distinct types of cell division: a vegetative division (mitosis), producing daughter cells genetically identical to the parent cell, and a cell division that produces haploid gametes for sexual reproduction (meiosis), reducing the number of chromosomes from two of each type in the diploid parent cell to one of each type in the daughter cells. Mitosis is a part of the cell cycle, in which, replicated chromosomes are separated into two new nuclei. Cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. In general, mitosis is preceded by the S stage of interphase and is followed by telophase and cytokinesis; which divides the cytoplasm, organelles, and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis all together define the M phase of an animal cell cycle—the division of the mother cell into two genetically identical daughter cells. To ensure proper progression through the cell cycle, DNA damage is detected and repaired at various checkpoints throughout the cycle. These checkpoints can halt progression through the cell cycle by inhibiting certain cyclin-CDK complexes. Meiosis undergoes two divisions resulting in four haploid daughter cells. Homologous chromosomes are separated in the first division of meiosis, such that each daughter cell has one copy of each chromosome. These chromosomes have already been replicated and have two sister chromatids which are then separated during the second division of meiosis. Both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. Both are believed to be present in the last eukaryotic common ancestor.
Prophase is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin reticulum and the disappearance of the nucleolus.
In cell biology, the spindle apparatus is the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a process that produces genetically identical daughter cells, or the meiotic spindle during meiosis, a process that produces gametes with half the number of chromosomes of the parent cell.
Telophase is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase are reversed. As chromosomes reach the cell poles, a nuclear envelope is re-assembled around each set of chromatids, the nucleoli reappear, and chromosomes begin to decondense back into the expanded chromatin that is present during interphase. The mitotic spindle is disassembled and remaining spindle microtubules are depolymerized. Telophase accounts for approximately 2% of the cell cycle's duration.
Immunofluorescence(IF) is a light microscopy-based technique that allows detection and localization of a wide variety of target biomolecules within a cell or tissue at a quantitative level. The technique utilizes the binding specificity of antibodies and antigens. The specific region an antibody recognizes on an antigen is called an epitope. Several antibodies can recognize the same epitope but differ in their binding affinity. The antibody with the higher affinity for a specific epitope will surpass antibodies with a lower affinity for the same epitope.
The spindle checkpoint, also known as the metaphase-to-anaphase transition, the spindle assembly checkpoint (SAC), the metaphase checkpoint, or the mitotic checkpoint, is a cell cycle checkpoint during metaphase of mitosis or meiosis that prevents the separation of the duplicated chromosomes (anaphase) until each chromosome is properly attached to the spindle. To achieve proper segregation, the two kinetochores on the sister chromatids must be attached to opposite spindle poles. Only this pattern of attachment will ensure that each daughter cell receives one copy of the chromosome. The defining biochemical feature of this checkpoint is the stimulation of the anaphase-promoting complex by M-phase cyclin-CDK complexes, which in turn causes the proteolytic destruction of cyclins and proteins that hold the sister chromatids together.
A kinetochore is a disc-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers attach during cell division to pull sister chromatids apart. The kinetochore assembles on the centromere and links the chromosome to microtubule polymers from the mitotic spindle during mitosis and meiosis. The term kinetochore was first used in a footnote in a 1934 Cytology book by Lester W. Sharp and commonly accepted in 1936. Sharp's footnote reads: "The convenient term kinetochore has been suggested to the author by J. A. Moore", likely referring to John Alexander Moore who had joined Columbia University as a freshman in 1932.
A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microscope" refers to any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image.
DAPI, or 4′,6-diamidino-2-phenylindole, is a fluorescent stain that binds strongly to adenine–thymine-rich regions in DNA. It is used extensively in fluorescence microscopy. As DAPI can pass through an intact cell membrane, it can be used to stain both live and fixed cells, though it passes through the membrane less efficiently in live cells and therefore provides a marker for membrane viability.
A spindle poison, also known as a spindle toxin, is a poison that disrupts cell division by affecting the protein threads that connect the centromere regions of chromosomes, known as spindles. Spindle poisons effectively cease the production of new cells by interrupting the mitosis phase of cell division at the spindle assembly checkpoint (SAC). However, as numerous and varied as they are, spindle poisons are not yet 100% effective at ending the formation of tumors (neoplasms). Although not 100% effective, substantive therapeutic efficacy has been found in these types of chemotherapeutic treatments. The mitotic spindle is composed of microtubules that aid, along with regulatory proteins, each other in the activity of appropriately segregating replicated chromosomes. Certain compounds affecting the mitotic spindle have proven highly effective against solid tumors and hematological malignancies.
Aurora kinase A also known as serine/threonine-protein kinase 6 is an enzyme that in humans is encoded by the AURKA gene.
Antigen Kiel 67, also known as Ki-67 or MKI67, is a protein that in humans is encoded by the MKI67 gene.
Aurora kinase B is a protein that functions in the attachment of the mitotic spindle to the centromere and in cytokinesis.
Cell synchronization is a process by which cells in a culture at different stages of the cell cycle are brought to the same phase. Cell synchrony is a vital process in the study of cells progressing through the cell cycle as it allows population-wide data to be collected rather than relying solely on single-cell experiments. The types of synchronization are broadly categorized into two groups; physical fractionization and chemical blockade.
Targeting protein for Xklp2 is a protein that in humans is encoded by the TPX2 gene. It is one of the many spindle assembly factors that play a key role in inducing microtubule assembly and growth during M phase.
Mitotic catastrophe has been defined as either a cellular mechanism to prevent potentially cancerous cells from proliferating or as a mode of cellular death that occurs following improper cell cycle progression or entrance. Mitotic catastrophe can be induced by prolonged activation of the spindle assembly checkpoint, errors in mitosis, or DNA damage and operates to prevent genomic instability. It is a mechanism that is being researched as a potential therapeutic target in cancers, and numerous approved therapeutics induce mitotic catastrophe.
Binucleated cells are cells that contain two nuclei. This type of cell is most commonly found in cancer cells and may arise from a variety of causes. Binucleation can be easily visualized through staining and microscopy. In general, binucleation has negative effects on cell viability and subsequent mitosis.
Induced cell cycle arrest is the use of a chemical or genetic manipulation to artificially halt progression through the cell cycle. Cellular processes like genome duplication and cell division stop. It can be temporary or permanent. It is an artificial activation of naturally occurring cell cycle checkpoints, induced by exogenous stimuli controlled by an experimenter.
J. Richard McIntosh is a Distinguished Professor Emeritus in Molecular, Cellular, and Developmental Biology at the University of Colorado Boulder. McIntosh first graduated from Harvard with a BA in Physics in 1961, and again with a Ph.D. in Biophysics in 1968. He began his teaching career at Harvard but has spent most of his career at the University of Colorado Boulder. At the University of Colorado Boulder, McIntosh taught biology courses at both the undergraduate and graduate levels. Additionally, he created an undergraduate course in the biology of cancer towards the last several years of his teaching career. McIntosh's research career looks at a variety of things, including different parts of mitosis, microtubules, and motor proteins.