The Cincinnati Water Maze (CWM) is a type of water maze. Water mazes are experimental equipment used in laboratories; they are mazes that are partially filled with water, and rodents are put in them to be observed and timed as they make their way through the maze. Generally two sets of rodents are put through the maze, one that has been treated, and another that has not, and the results are compared. The experimenter uses this type of maze to learn about the subject's cognitive or emotional processes. [1] [2]
The Cincinnati Water Maze is a water maze that has nine interconnected T-intersections. The rats are forced to find their way from one end of the maze to the other by navigating through openings in the side of the walls rather than at the end of each passage. The walls are wide enough so that the rat cannot prop itself up on the wall, and the walls are made out of Plexiglas, to prevent the subjects from carrying out any unwanted behavior such as climbing over the wall, or finding seams in the walls to grab onto. These mazes are filled with water because rats are typically natural swimmers, but rats prefer not to be in the water, so it provides motivation for all the subjects to want to complete the maze. [2]
This test can also be run in the dark if the researcher wants to have a greater focus on the subject's egocentric navigational abilities because if the rat cannot reference visual cues in the distance, it can not use the other type of reference based navigation, allocentric navigation. There are two parts of egocentric navigation that are evaluated, route-based navigation, a clearly defined path through an environment. The other part is path integrated navigation, the ability to take a different and more direct path to a starting location than the outbound path. Egocentric navigation is evaluated by observing the subjects and recording how many times the subject crosses a predetermined line at each T-intersection with their head and forepaws, indicating they are going in the wrong direction, or in other words, they are lost. [2]
The predecessor to the Cincinnati Water Maze (CWM), the Biel Water Maze (BWM), was invented in 1940 by W. C. Biel to test rats’ egocentric navigational capabilities. As such, the BWM was enclosed within a container to prevent any external stimuli, such as light, from assisting the subject in completing the task. This ensures that the rat's memory from previous trials is the primary source of information. Moreover, the original design of the BWM had walls measuring just over a fifth of a meter in height, leaving approximately 20 cm of clearance between the top of the maze and the ceiling of the container. The design of the BWM was made so that each intersection formed a T-intersection. [2]
Nevertheless, there were several concerns with the BWM, including the abundance of T-Intersections, which prompted the innovation that would result in the creation of the CWM. In contrast to the BWM, the CWM possesses wider channels to prevent larger rats from propping themselves up, and has the added benefit of asymmetry and extra intersections. Furthermore, the strategy that was predominantly seen in the BWM, where rats would swim in a straight line until forced to turn, was undone by the inherent asymmetry of the CWM. Instead, if the rats began at point-A, to arrive at point-B they would have to turn halfway down a corridor prior to reaching a dead end. Conversely, beginning at point-B towards point-A allows for the standard method previously mentioned. [2]
The Cincinnati Water Maze was developed by Dr. Charles V. Vorhees. Many improvements were developed in collaboration with Dr. Michael T. Williams. The CWM is most often used to measure escape latency, which is the time required for the subject to escape the maze. Researchers may also measure the number of errors the subject makes, which are counted when the subject moves into the stem or arms of a dead-end cul-de-sac. The animal will typically be put in the same maze for 2 trials per day for 5 days if tested in the light and 18 or more days if tested in the dark, the goal being to assess the rat's procedural learning. The subject must learn the route as there is only one way out. Rats are given a 5-minute time limit if they cannot find the escape to prevent fatigue. By studying the escape latency and errors of the animal, researchers have a standardized test for the rate of learning in a subject. [2] CWMs are especially useful because they are a direct test of egocentric learning/navigation. [3] Without external visual cues, the rat is forced to remember the sequence of turns from previous trials to escape. This is useful for determining the effect of drugs on short-term memory egocentric learning. The test is also useful in mapping areas of the brain where spatial learning occurs by recording areas of brain activity during the test. In one variation, adding light, or other visual cues, researchers may measure allocentric learning/memory. With this procedure, the test becomes similar to the Morris Water Maze, where spatial learning is tested. Furthermore, in this variation, the rat is able to use both allocentric and egocentric cues to escape. This is particularly useful for studying spatial memory, as the rats are able to use both types of navigational cues. [4] The CWM is not useful for mice. Mice do not have the cognitive ability to find the escape from such a complex maze. Further, the CWM must be preceded by a day of training in which they must learn to swim a simple straight water-filled channel from one end to the other for 4 trials. This allows one to measure swim speed to see that all groups are equal before entering the maze and to teach the rats that the submerged platform at the end is the escape. Without this prior training, there are high failure rates when rats were put into the CWM. Even with this training, when run under infrared light in the dark, it takes control rats 5–7 days to just begin to learn how to escape and 18–24 days to show mastery.
Since water mazes have been used mostly with rats and mice, the extrapolation of research data from these experiments to other organisms and humans is limited. The Cincinnati Water Maze (CWM) poses some limitations to experimenters as with all rodent tests, one must extrapolate to human egocentric/procedural learning and memory where different tests are used. For example, the element of water escape is different from using food restriction together with food or sweetened liquid as used in appetitive mazes. An advantage of water mazes is that they require less training than appetitive mazes, and if rats have pre-existing activity differences (if they are hyperactive or hypoactive in an open-field) those differences do not affect swimming and therefore do not influence maze performance. The CWM only measures route-based egocentric navigation when run in the dark, it does not measure the other component of egocentric navigation, that is, path integration, where a rat can learn a direct or short-cut path from the start to the goal as animals can do in some unstructured mazes. Another advantage of water mazes is that they are insensitive to body weight differences. Therefore, if an experimental treatment reduces the growth and body weight of one group compared with controls, it has little or no effect on water maze learning. Research has shown that the CWM has a steep learning curve compared to the Morris Water Maze; making the data collected on early trials less useful. [5] [6]
The Cincinnati Water Maze (CWM) can be summarized as a combination of the mazes that can be used with or without distal cues present. The rats are faced with a much different challenge compared with simple T or Y-mazes due to the greater complexity of this maze. When the CWM is run in the dark it is extremely challenging for rats to learn but this complexity can reveal egocentric, striatal-related and perhaps lateral entorhinal cortex abnormalities since these are the regions associated with procedural learning and memory. [7]
Each of the mazes centered on cognitive research are measured by observing the subject's ability to maneuver through the maze whether this be measured by time, number of trials and errors. Consistency from rat to rat in their ability to solve the maze task is important and allows scientists to then look for what may cause a deviation in performance in a certain rat, or groups of rats. [7]
Animal cognition encompasses the mental capacities of non-human animals including insect cognition. The study of animal conditioning and learning used in this field was developed from comparative psychology. It has also been strongly influenced by research in ethology, behavioral ecology, and evolutionary psychology; the alternative name cognitive ethology is sometimes used. Many behaviors associated with the term animal intelligence are also subsumed within animal cognition.
Edward Chace Tolman was an American psychologist and a professor of psychology at the University of California, Berkeley. Through Tolman's theories and works, he founded what is now a branch of psychology known as purposive behaviorism. Tolman also promoted the concept known as latent learning first coined by Blodgett (1929). A Review of General Psychology survey, published in 2002, ranked Tolman as the 45th most cited psychologist of the 20th century.
In cognitive psychology and neuroscience, spatial memory is a form of memory responsible for the recording and recovery of information needed to plan a course to a location and to recall the location of an object or the occurrence of an event. Spatial memory is necessary for orientation in space. Spatial memory can also be divided into egocentric and allocentric spatial memory. A person's spatial memory is required to navigate around a familiar city. A rat's spatial memory is needed to learn the location of food at the end of a maze. In both humans and animals, spatial memories are summarized as a cognitive map.
The Morris water navigation task, also known as the Morris water maze, is a behavioral procedure mostly used with rodents. It is widely used in behavioral neuroscience to study spatial learning and memory. It enables learning, memory, and spatial working to be studied with great accuracy, and can also be used to assess damage to particular cortical regions of the brain. It is used by neuroscientists to measure the effect of neurocognitive disorders on spatial learning and possible neural treatments, to test the effect of lesions to the brain in areas concerned with memory, and to study how age influences cognitive function and spatial learning. The task is also used as a tool to study drug-abuse, neural systems, neurotransmitters, and brain development.
The radial arm maze was designed by Olton and Samuelson in 1976 to measure spatial learning and memory in rats. The original apparatus consists of eight equidistantly spaced arms, each about 4 feet long, and all radiating from a small circular central platform. At the end of each arm there is a food site, the contents of which are not visible from the central platform.
A place cell is a kind of pyramidal neuron in the hippocampus that becomes active when an animal enters a particular place in its environment, which is known as the place field. Place cells are thought to act collectively as a cognitive representation of a specific location in space, known as a cognitive map. Place cells work with other types of neurons in the hippocampus and surrounding regions to perform this kind of spatial processing. They have been found in a variety of animals, including rodents, bats, monkeys and humans.
Idiothetic literally means "self-proposition", and is used in navigation models to describe the use of self-motion cues, rather than allothetic, or external, cues such as landmarks, to determine position and movement. The word is sometimes also spelled "ideothetic". Idiothetic cues include vestibular, optic flow and proprioception. Idiothetic cues are important for the type of navigation known as path integration in which subjects navigate purely using such self-motion cues. This is achieved by an animal through the signals generated by angular and linear accelerations in the course of its exploration. These information generate and update a vector towards the starting point and an accurate path for return.
A cognitive map is a type of mental representation which serves an individual to acquire, code, store, recall, and decode information about the relative locations and attributes of phenomena in their everyday or metaphorical spatial environment. The concept was introduced by Edward Tolman in 1948. He tried to explain the behavior of rats that appeared to learn the spatial layout of a maze, and subsequently the concept was applied to other animals, including humans. The term was later generalized by some researchers, especially in the field of operations research, to refer to a kind of semantic network representing an individual's personal knowledge or schemas.
A water maze is a device used to test an animal's memory in which the alleys are filled with water, providing a motivation to escape.
The Barnes maze is a tool used in psychological laboratory experiments to measure spatial learning and memory. The test was first developed by Dr. Carol Barnes in 1979. The test subjects are usually rodents such as mice or lab rats, which either serve as a control or may have some genetic variable or deficiency present in them which will cause them to react to the maze differently. The basic function of Barnes maze is to measure the ability of a mouse to learn and remember the location of a target zone using a configuration of distal visual cues located around the testing area. This noninvasive task is useful for evaluating novel chemical entities for their effects on cognition as well as identifying cognitive deficits in transgenic strains of rodents that model for disease such as Alzheimer's disease. It is also used by neuroscientists to determine whether there is a causative effect after mild traumatic brain injury on learning deficits and spatial memory retention (probe) at acute and chronic time points. This task is dependent on the intrinsic inclination of the subjects to escape from an aversive environment and on hippocampal-dependent spatial reference memory.
The oasis maze is a spatial memory task used in psychology and neuroscience research and is the dry version of the Morris water navigation task. It is a land-based spatial memory task in which a thirsty rat uses distal spatial cues to search an open field for a specific location (Oasis) containing water. The maze consists of an enclosed space in which a small amount of water is hidden. A thirsty rat is then placed in the maze and learns where the water is by trial and error. The maze tests memory by allowing the researcher to record the rat's performance on this task after it is learned and various time intervals or other events supposedly disruptive to memory have occurred.
Selective amnesia is a type of amnesia in which the sufferer loses only certain parts of their memory. Common elements that may be forgotten are relationships, where they live, and certain special abilities and talents.
Allothetic means being centred in people or places other than oneself. It has been defined as a process of "determining and maintaining a course or trajectory from one place to another. It can be used as a navigational strategy among animals to aid in their survival. It can also be a source of information for machines, particularly those biologically-inspired models and is provided by a set of laser rangefinders, sonars, or vision.
The retrosplenial cortex (RSC) is a cortical area in the brain comprising Brodmann areas 29 and 30. It is secondary association cortex, making connections with numerous other brain regions. The region's name refers to its anatomical location immediately behind the splenium of the corpus callosum in primates, although in rodents it is located more towards the brain surface and is relatively larger. Its function is currently not well understood, but its location close to visual areas and also to the hippocampal spatial/memory system suggest it may have a role in mediating between perceptual and memory functions, particularly in the spatial domain. However, its exact contribution to either space or memory processing has been hard to pin down.
Purposive behaviorism is a branch of psychology that was introduced by Edward Tolman. It combines the study of behavior while also considering the purpose or goal of behavior. Tolman thought that learning developed from knowledge about the environment and how the organism relates to its environment. Tolman's goal was to identify the complex cognitive mechanisms and purposes that guided behavior. His theories on learning went against the traditionally accepted stimulus-response connections at his time that had been proposed by other psychologists such as Edward Thorndike. Tolman disagreed with John B.Watson's behaviorism, so he initiated his own behaviorism, which became known as purposive behaviorism.
The relationship between sleep and memory has been studied since at least the early 19th century. Memory, the cognitive process of storing and retrieving past experiences, learning and recognition, is a product of brain plasticity, the structural changes within synapses that create associations between stimuli. Stimuli are encoded within milliseconds; however, the long-term maintenance of memories can take additional minutes, days, or even years to fully consolidate and become a stable memory that is accessible. Therefore, the formation of a specific memory occurs rapidly, but the evolution of a memory is often an ongoing process.
Spontaneous Alternation Behavior (SAB) describes the tendency to alternate in their pursuit of different stimuli in consecutive trials despite a lack of training or reinforcement. The Behavior emerged from experiments using animals, mainly rodents, who naturally demonstrated the behavioral pattern when placed in previously unexplored maze shapes.
Spatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals including humans behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines work together to understand spatial cognition in different species, especially in humans. Thereby, spatial cognition studies also have helped to link cognitive psychology and neuroscience. Scientists in both fields work together to figure out what role spatial cognition plays in the brain as well as to determine the surrounding neurobiological infrastructure.
Many memory impairments exist as a result from or cause of eating disorders. Eating disorders (EDs) are characterized by abnormal and disturbed eating patterns that affect the lives of the individuals who worry about their weight to the extreme. These abnormal eating patterns involve either inadequate or excessive food intake, affecting the individual's physical and mental health.
In behavioral science, a T-maze is a simple forked passage used in animal cognition experiments. It is shaped like the letter T, providing the subject, typically a rodent, with a straightforward choice. T-mazes are used to study how the rodents function with memory and spatial learning through applying various stimuli. Starting in the early 20th century, rodents were used in experiments such as the T-maze. These concepts of T-mazes are used to assess rodent behavior. The different tasks, such as left-right discrimination and forced alternation, are mainly used with rodents to test reference and working memory.