Clare Warren

Last updated

Clare J. Warren
Professor Clare Warren.jpg
Born1977 (age 4546)
Alma mater University of Oxford
Scientific career
Institutions Open University
Dalhousie University
Thesis Continental subduction beneath the semail ophiolite, Oman : constraints from U-Pb geochronology and metamorphic modelling  (2004)

Clare Warren (born 1977) is a British geologist who is Professor of Earth Sciences at the Open University. Her research considers metamorphic petrology and how deeply buried rocks record information about their burial and exhumation. She was awarded the Geological Society of London Dewey Medal in 2022.

Contents

Early life and education

Warren was an undergraduate student at the University of Oxford, where she studied earth sciences. After graduating she moved to University College London, where she earned a master's degree in hydrogeology.[ citation needed ] She remained in Oxford for her graduate research, where she investigated the Arabian continental margin underneath Semail Ophiolite. [1] After graduating Warren joined Dalhousie University as a Killam Fellow.[ citation needed ]

Research and career

Warren joined the Open University in 2011 as a Natural Environment Research Council advanced postdoctoral fellow. [2] Her early research considered how quickly Indian continental crust was buried underneath Tibet. [2] This work led her to focus her career on understanding the processes that occur when continents collide or mountains form. [3] She studies metamorphic petrology, including mineral scale processes and large scale tectonics. This has included studying argon diffusion [4] and ultra-high-pressure metamorphism (UHP) rocks. Her work on the exhumation of UHP rocks has identified new mechanisms. [5]

Warren serves as lead of the Open University Dynamic Earth Research Group. [6] She was made a Professor of Metamorphic Geology in 2020. [7]

Awards and honours

Selected publications

Related Research Articles

<span class="mw-page-title-main">Metamorphic rock</span> Rock that was subjected to heat and pressure

Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than 150 to 200 °C and, often, elevated pressure of 100 megapascals (1,000 bar) or more, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be an igneous, sedimentary, or existing metamorphic rock.

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

Obduction is a geological process whereby denser oceanic crust is scraped off a descending ocean plate at a convergent plate boundary and thrust on top of an adjacent plate. When oceanic and continental plates converge, normally the denser oceanic crust sinks under the continental crust in the process of subduction. Obduction, which is less common, normally occurs in plate collisions at orogenic belts or back-arc basins.

<span class="mw-page-title-main">Metamorphism</span> Change of minerals in pre-existing rocks without melting into liquid magma

Metamorphism is the transformation of existing rock to rock with a different mineral composition or texture. Metamorphism takes place at temperatures in excess of 150 to 200 °C, and often also at elevated pressure or in the presence of chemically active fluids, but the rock remains mostly solid during the transformation. Metamorphism is distinct from weathering or diagenesis, which are changes that take place at or just beneath Earth's surface.

<span class="mw-page-title-main">Ophiolite</span> Uplifted and exposed oceanic crust

An ophiolite is a section of Earth's oceanic crust and the underlying upper mantle that has been uplifted and exposed above sea level and often emplaced onto continental crustal rocks.

<span class="mw-page-title-main">Coesite</span> Silica mineral, rare polymorph of quartz

Coesite is a form (polymorph) of silicon dioxide Si O2 that is formed when very high pressure (2–3 gigapascals), and moderately high temperature (700 °C, 1,300 °F), are applied to quartz. Coesite was first synthesized by Loring Coes Jr., a chemist at the Norton Company, in 1953.

<span class="mw-page-title-main">Eclogite</span> A dense metamorphic rock formed under high pressure

Eclogite is a metamorphic rock containing garnet (almandine-pyrope) hosted in a matrix of sodium-rich pyroxene (omphacite). Accessory minerals include kyanite, rutile, quartz, lawsonite, coesite, amphibole, phengite, paragonite, zoisite, dolomite, corundum and, rarely, diamond. The chemistry of primary and accessory minerals is used to classify three types of eclogite. The broad range of eclogitic compositions has led a longstanding debate on the origin of eclogite xenoliths as subducted, altered oceanic crust.

<span class="mw-page-title-main">Continental collision</span> Phenomenon in which mountains can be produced on the boundaries of converging tectonic plates

In geology, continental collision is a phenomenon of plate tectonics that occurs at convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produced, and two continents sutured together. Continental collision is only known to occur on Earth.

<span class="mw-page-title-main">Rock cycle</span> Transitional concept of geologic time

The rock cycle is a basic concept in geology that describes transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. Each rock type is altered when it is forced out of its equilibrium conditions. For example, an igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and change as they encounter new environments. The rock cycle explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.

In geology ultrahigh-temperature metamorphism (UHT) is extreme crustal metamorphism with metamorphic temperatures exceeding 900 °C. Granulite-facies rocks metamorphosed at very high temperatures were identified in the early 1980s, although it took another decade for the geoscience community to recognize UHT metamorphism as a common regional phenomenon. Petrological evidence based on characteristic mineral assemblages backed by experimental and thermodynamic relations demonstrated that Earth's crust can attain and withstand very high temperatures (900–1000 °C) with or without partial melting.

<span class="mw-page-title-main">Hajar Mountains</span> Mountain range in Oman and the UAE

The Hajar Mountains are the highest mountain range in the eastern part of the Arabian Peninsula, shared between northern Oman and eastern United Arab Emirates. Also known as "Oman Mountains", they separate the low coastal plain of Oman from the high desert plateau, and lie 50–100 km (31–62 mi) inland from the Gulf of Oman.

Ultra-high-pressure metamorphism refers to metamorphic processes at pressures high enough to stabilize coesite, the high-pressure polymorph of SiO2. It is important because the processes that form and exhume ultra-high-pressure (UHP) metamorphic rocks may strongly affect plate tectonics, the composition and evolution of Earth's crust. The discovery of UHP metamorphic rocks in 1984 revolutionized our understanding of plate tectonics. Prior to 1984 there was little suspicion that continental rocks could reach such high pressures.

<span class="mw-page-title-main">Eclogitization</span> The tectonic process in which the dense, high-pressure, metamorphic rock, eclogite, is formed

Eclogitization is the tectonic process in which the high-pressure, metamorphic facies, eclogite, is formed. This leads to an increase in the density of regions of Earth's crust, which leads to changes in plate motion at convergent boundaries.

<span class="mw-page-title-main">High pressure metamorphic terranes along the Bangong-Nujiang Suture Zone</span>

High pressure terranes along the ~1200 km long east-west trending Bangong-Nujiang suture zone (BNS) on the Tibetan Plateau have been extensively mapped and studied. Understanding the geodynamic processes in which these terranes are created is key to understanding the development and subsequent deformation of the BNS and Eurasian deformation as a whole.

<span class="mw-page-title-main">Samail Ophiolite</span>

The Samail Ophiolite (also spelled Semail Ophiolite) of the Hajar Mountains of Oman and the United Arab Emirates is a large slab of oceanic crust, made of volcanic rocks and ultramafic rocks from the Earth's upper mantle, that was overthrust onto continental crust as an ophiolite. It is located on the eastern corner of the Arabian Peninsula and covers an area of approximately 100,000 km2. Based on uranium-lead dating techniques, the Samail Ophiolite formed in the Late Cretaceous. It is primarily made of silicate rocks with (SiO2) content ranging from 45–77 wt%. The Samail Ophiolite is important because it is rich in copper and chromite ore bodies, and because it also provides valuable information about the ocean floor and the upper mantle on land. Geologists have studied the area, attempting to find the best model explaining the formation of the Samail Ophiolite.

Daniela Rubatto is a Professor of geochemistry at the University of Bern, Switzerland. Her areas of interest and expertise are in isotope geochemistry, metamorphic petrology, mineralogy, tectonics, inorganic geochemistry, and geochronology.

<span class="mw-page-title-main">Subduction zone metamorphism</span> Changes of rock due to pressure and heat near a subduction zone

A subduction zone is a region of the earth's crust where one tectonic plate moves under another tectonic plate; oceanic crust gets recycled back into the mantle and continental crust gets created by the formation of arc magmas. Arc magmas account for more than 20% of terrestrially produced magmas and are produced by the dehydration of minerals within the subducting slab as it descends into the mantle and are accreted onto the base of the overriding continental plate. Subduction zones host a unique variety of rock types created by the high-pressure, low-temperature conditions a subducting slab encounters during its descent. The metamorphic conditions the slab passes through in this process creates and destroys water bearing (hydrous) mineral phases, releasing water into the mantle. This water lowers the melting point of mantle rock, initiating melting. Understanding the timing and conditions in which these dehydration reactions occur, is key to interpreting mantle melting, volcanic arc magmatism, and the formation of continental crust.

In geology, the term exhumation refers to the process by which a parcel of rock, approaches Earth's surface.

<span class="mw-page-title-main">Pressure-temperature-time path</span>

The Pressure-Temperature-time path is a record of the pressure and temperature (P-T) conditions that a rock experienced in a metamorphic cycle from burial and heating to uplift and exhumation to the surface. Metamorphism is a dynamic process which involves the changes in minerals and textures of the pre-existing rocks (protoliths) under different P-T conditions in solid state. The changes in pressures and temperatures with time experienced by the metamorphic rocks are often investigated by petrological methods, radiometric dating techniques and thermodynamic modeling.

<span class="mw-page-title-main">Tonalite–trondhjemite–granodiorite</span> Intrusive rocks with typical granitic composition

Tonalite–trondhjemite–granodiorite (TTG) rocks are intrusive rocks with typical granitic composition but containing only a small portion of potassium feldspar. Tonalite, trondhjemite, and granodiorite often occur together in geological records, indicating similar petrogenetic processes. Post Archean TTG rocks are present in arc-related batholiths, as well as in ophiolites, while Archean TTG rocks are major components of Archean cratons.

References

  1. Warren, Clare J; University of Oxford (2004). Continental subduction beneath the semail ophiolite, Oman: constraints from U-Pb geochronology and metamorphic modelling. Oxford: University of Oxford. OCLC   500459204.
  2. 1 2 Spencer, Christopher. "Eclogites in Bhutan with Clare Warren". TravelingGeologist. Retrieved 2 March 2022.
  3. "Clare Warren". Geology Bites. Retrieved 2 March 2022.
  4. "Professor Clare Warren – CENTA". centa.ac.uk. Retrieved 2 March 2022.
  5. 1 2 metamorphicstudiesgroup (8 April 2020). "Announcement of the Barrow Award". Metamorphic Studies Group. Retrieved 2 March 2022.
  6. "Dynamic Earth". School of Environment, Earth and Ecosystem Sciences. 6 August 2020. Retrieved 2 March 2022.
  7. "Congratulations to Clare Warren, Professor of Metamorphic Geology". School of Environment, Earth and Ecosystem Sciences. 20 November 2020. Retrieved 2 March 2022.
  8. "Metamorphic Studies Group Virtual Research in Progress 2020 -". www.minersoc.org. Retrieved 2 March 2022.
  9. "The Geological Society of London - 2022 Award Winners announced". www.geolsoc.org.uk. Retrieved 3 March 2022.