In civil engineering, clearance refers to the difference between the loading gauge and the structure gauge in the case of railroad cars or trams, or the difference between the size of any vehicle and the width/height of doors, the width/height of an overpass or the diameter of a tunnel as well as the air draft under a bridge, the width of a lock or diameter of a tunnel in the case of watercraft. In addition, there is the difference between the deep draft and the stream bed or sea bed of a waterway.
For roadways and waterways, the clearance is typically specified as the width/height of a structure that the vehicle needs to pass instead of the difference between the vehicle and the structure.
In railways, clearance is the difference between the loading gauge and the structure gauge. A clearance standard is established using static rolling stock outline (static gauge) as the starting point. This is a cross-sectional outline of a maximum size rolling stock when it is not running. The standard then defines maximum kinematic rolling stock outline for when rolling stocks are running to account for suspension and lateral motion on the track. This is also known as "kinematic envelope". The standard also defines base operating standard for clearance which is larger than the kinematic envelope. This should be maximum outline of the normal rail operation and can only be infringed in special circumstances. The standard then adds another outline called maintenance intervention standard outline that larger than the base operating standard by defining a safety margin (contingency gap) from the kinematic envelope. When there is an infringement of this outline, a maintenance work is required to bring to clearance standard. This establishes the loading gauge. Finally, the standard includes structure outline or structure gauge, leaving a space between the loading gauge and structure gauge as clearance. [1]
In roadways, vertical clearance is the measurement from the ground or the road pavement to the bottom of overpasses or bridges. [2] [3]
American Association of State Highway Officials (AASHO) established Interstate Highway standards which included minimum vertical clearance of 14 feet (4.3 m). The Department of Defense later informed that the clearance was not sufficient for national defense purposes and wanted the vertical clearance to be raised to 17 feet (5.2 m). Eventually, the new standards were approved in 1960 to have the minimum vertical clearance of new structures to be 16 feet (4.9 m). There were up to 2,650 existing overpasses in 1967 that were not in compliance with the new standards. The decision was made to only raise those 350 overpasses that served up to 95% of major military installations. Other overpasses were left to be reconstructed to the new minimum vertical clearance at later times. [2]
Australia defines minimum vertical clearance based on types of roads. The minimum vertical clearance is 5.4 metres (17 ft 9 in) for main roads and highways, and 4.6 metres (15 ft 1 in) for other local roads with road authority approval. For high and very high clearance roads, the values are between 5.9 metres (19 ft 4 in) and 6.5 metres (21 ft 4 in). [4]
Eurocode 1: Actions on structures has a definition of "physical clearance" between roadway surface and the underside of bridge element. The code also defines the clearance that is shorter than the physical clearance to account for sag curves, bridge deflection and expected settlements) with a recommendation of minimum clearance of 5 metres (16 ft 5 in). [5]
In Singapore, the minimum vertical clearance is 5.4 metres (17 ft 9 in). The clearance for overhead signs is 5.7 metres (18 ft 8 in) and the clearance for the soffit or underside of overpasses is 10 metres (32 ft 10 in). [6]
In South Africa and the southern region of Africa, the minimum vertical clearance of modern bridges is 5 metres (16 ft 5 in), although the legal height limit of road vehicles is still at 4.3 metres (14 ft 1 in). [7]
United Kingdoms has a standard on minimum clearance of a public highway at 16 feet 6 inches (5.03 m). Any bridges that do not meet the clearance requirement are considered to be "low bridges" and they require to have signage to indicate the clearance. [8]
Bridge or tunnel strikes are collisions of vehicles with bridge or tunnel structures. These may involve over-height vehicles, or low vertical clearance bridges or tunnels. These accidents occur frequently and are a major issue worldwide. In United Kingdom, railway bridge strikes happen on an average of once every four and half hours with total of 1789 times in 2019. Several bridges being hit over 20 times in a single year. The total cost borne by the state was around £23 million. In Beijing, China, 20% of all bridge damages are caused by bridge strikes. Texas Department of Transportation estimated in 2013 that an average cost to repair a bridge strike is $180,000 USD. [9] [10]
A 2.7 m (8 ft 10+1⁄4 in) high overpass bridge near St Petersburg, Russia, is known as the "Bridge of Stupidity" because it is often struck by vehicles despite many warning signs. In May 2018, after it was struck for the 150th time by a GAZelle truck, a birthday cake was presented to the bridge. This made national news. [11] [12]
Similarly, an 11 ft 8 in (3.56 m) overpass in Durham, North Carolina, US, was frequently struck by vehicles, and made the news a number of times until it was raised in 2019. [13]
Infrared sensors, which trigger warning signs when a high vehicle approaches, were added to an underpass in Frauenfeld, Switzerland, only after several incidents. [14] [15]
A similar situation exists at an underpass on Guy Street in Montreal, which has a clearance of 3.75 m (12 ft 4 in). [16] [17] [18]
In United States, the term "horizontal clearance" is used interchangeably with "lateral offset". This is the space from the edge of the roadway that is clear from vertical obstructions such as sign posts, utility poles, and fire hydrants. The horizontal clearance is used in urban environments where these objects are expected to be near roadways. The horizontal clearance are to prevent overhung elements such as side mirrors of large vehicles driven at the extreme edge of the roads to hit such objects. It also allows opening curbside doors of parked vehicles. Minimum horizontal clearance in US standard is 1.5 feet (0.46 m). It is to be noted that horizontal clearance is not the same concept as clear zone which is used in non-urban highways. [19] [20]
Some countries have specific horizontal clearances from the edge of the roads for specific types of objects next to the roads. For example, India has horizontal clearance of 10 metres (32 ft 10 in) for electrical and telecommunication poles, and 30 centimetres (12 in) for street light poles of roads with curbs. For roads without curbs, the clearance for that is 1.5 metres (4 ft 11 in) given that the minimum clearance from the center line of the roads is 5 metres (16 ft 5 in). [21]
For roadways that require passing under some structures such as tunnels, there are standards on the entire width of the roads known as horizontal curb-to-curb and wall-to-wall clearances. American Association of State Highway and Transportation Officials (AASHTO) recommends having minimum curb-to-curb clearance for two-lane highways of 24 feet (7.3 m) and wall-to-wall clearance of 30 feet (9.1 m), while desired curb-to-curb clearance should be 39 feet (12 m), and wall-to-wall clearance should be 44 feet (13 m). [22]
For bike paths, there are two types of horizontal clearances. The first type is the horizontal clearance of any obstacles on the paths. An example is the use of bollards to prevent cars from entering bike paths. The horizontal clearance on the paths defines a minimum clearance of adjacent obstacles such as those bollards to allow clear flowing of bike traffic. Some European countries have that specification between 1.6 metres (5 ft 3 in) and 1.75 metres (5 ft 9 in). The second type is horizontal clearance next to the paths. This clearance is a distance from the edge of the biking paths to any vertical obstacles such as poles, fences, and tree branches to prevent pedal or handlebar from hitting such obstacles. The clearance values may depend on the heights and types of the obstacles. For example, in Flanders, the horizontal clearance next to the paths for poles, lampposts and trees is 0.75 metres (2 ft 6 in), and for walls and fences is 1 metre (3 ft 3 in). The horizontal clearance from the edge of the path to the curb is based on curb heights. For curbs of heights up to 7 centimetres (2.8 in), the horizontal clearance is 0.25 metres (9.8 in), and for higher curbs, the clearance is 0.5 metres (1 ft 8 in). [23]
In waterways, "bridge span clearance" is a measurement from water surface to the underside of bridge span. The most conservative clearance uses the water level at the mean highest high water (MHHW), the average value of the highest high tide of a measurement period. This is known as "clearance below", "vertical clearance" and "charted height" [3] [24] [25]
On other hand, the "overhead clearance" is a measurement from the top most part of a given vessel to the underside of the bridge. The "underkeel clearance" is the distance between the lowest part of a given vessel to the waterway bed. [25]
The other type of clearances for the bridges is "clearance above" the bridge floor. This is the vertical clearances for road traffic on the bridge. [3]
A viaduct is a specific type of bridge that consists of a series of arches, piers or columns supporting a long elevated railway or road. Typically a viaduct connects two points of roughly equal elevation, allowing direct overpass across a wide valley, road, river, or other low-lying terrain features and obstacles. The term viaduct is derived from the Latin via meaning "road", and ducere meaning "to lead". It is a 19th-century derivation from an analogy with ancient Roman aqueducts. Like the Roman aqueducts, many early viaducts comprised a series of arches of roughly equal length.
A loading gauge is a diagram or physical structure that defines the maximum height and width dimensions in railway vehicles and their loads. Their purpose is to ensure that rail vehicles can pass safely through tunnels and under bridges, and keep clear of platforms, trackside buildings and structures. Classification systems vary between different countries, and gauges may vary across a network, even if the track gauge is uniform.
In road transport, a lane is part of a roadway that is designated to be used by a single line of vehicles to control and guide drivers and reduce traffic conflicts. Most public roads (highways) have at least two lanes, one for traffic in each direction, separated by lane markings. On multilane roadways and busier two-lane roads, lanes are designated with road surface markings. Major highways often have two multi-lane roadways separated by a median.
In aviation, lowest safe altitude (LSALT) is an altitude that is at least 500 feet above any obstacle or terrain within a defined safety buffer region around a particular route that a pilot might fly. The safety buffer allows for errors in the air by including an additional area that a pilot might stray into by flying off track. By flying at or above this altitude a pilot complies with terrain clearance requirements on that particular flight leg.
The Hampton Roads Bridge–Tunnel (HRBT) is a 3.5-mile-long (5.6 km) Hampton Roads crossing for Interstate 64 (I-64) and US Route 60 (US 60). It is a four-lane facility comprising bridges, trestles, artificial islands, and tunnels under the main shipping channels for Hampton Roads harbor in the southeastern portion of Virginia in the United States.
An elevated highway is a controlled-access highway that is raised above grade for its entire length. Elevation is usually constructed as viaducts, typically a long pier bridge. Technically, the entire highway is a single bridge.
Standards for Interstate Highways in the United States are defined by the American Association of State Highway and Transportation Officials (AASHTO) in the publication A Policy on Design Standards: Interstate System. For a certain highway to be considered an Interstate Highway, it must meet these construction requirements or obtain a waiver from the Federal Highway Administration.
The Kap Shui Mun Bridge (KSMB) in Hong Kong, part of Lantau Link of Route 8, is one of the longest cable-stayed bridges in the world that transports both road and railway traffic, with the upper deck used for motor vehicles and the lower deck for both vehicles and the MTR. It has a main span of 430 metres (1,410 ft) and an overall length of 750 metres (2,460 ft). It spans the Kap Shui Mun marine channel between Ma Wan and Lantau islands and has a vertical clearance of 47 metres (154 ft) above sea level. The bridge was completed in 1997.
Guard, Guard rails, guardrails, railings or protective guarding, in general, are a boundary feature and may be a means to prevent or deter access to dangerous or off-limits areas while allowing light and visibility in a greater way than a fence. Common shapes are flat, rounded edge, and tubular in horizontal railings, whereas tetraform spear-headed or ball-finialled are most common in vertical railings around homes. Park and garden railings commonly in metalworking feature swirls, leaves, plate metal areas and/or motifs particularly on and beside gates.
A curb, or kerb, is the edge where a raised sidewalk or road median/central reservation meets a street or other roadway.
A structure gauge, also called the minimum structure outline, is a diagram or physical structure that sets limits to the extent that bridges, tunnels and other infrastructure can encroach on rail vehicles. It specifies the height and width of station platforms, tunnels and bridges, and the width of the doors that allow access to a warehouse from a rail siding. Specifications may include the minimum distance from rail vehicles to railway platforms, buildings, lineside electrical equipment cabinets, signalling equipment, third rails or supports for overhead lines.
The Posey and Webster Street Tubes are two parallel underwater tunnels connecting the cities of Oakland and Alameda, California, running beneath the Oakland Estuary. Both are immersed tubes, constructed by sinking precast concrete segments to a trench in the Estuary floor, then sealing them together to create a tunnel. The Posey Tube, completed in 1928, currently carries one-way (Oakland-bound) traffic under the Estuary, while the Webster Street Tube, completed in 1963, carries traffic from Oakland to Alameda.
In road transport, an oversize load is a load that exceeds the standard or ordinary legal size and/or weight limits for a truck to convey on a specified portion of road, highway, or other transport infrastructure, such as air freight or water freight. In Europe, it may be referred to as special transport or heavy and oversized transportation. There may also be load-per-axle limits. However, a load that exceeds the per-axle limits but not the overall weight limits is considered overweight. Examples of oversize/overweight loads include construction machines, pre-built homes, containers, and construction elements.
Air draft is the distance from the surface of the water to the highest point on a vessel. This is similar to the deep draft of a vessel which is measured from the surface of the water to the deepest part of the hull below the surface. However, air draft is expressed as a height, while deep draft is expressed as a depth.
Trailer on flatcar, also known as TOFC or piggyback, is the practice of carrying semi-trailers on railroad flatcars. TOFC allows for shippers to move truckloads long distances more cheaply than can be done by having each trailer towed by a truck, since one train can carry more than 100 trailers at once. The trailers will be moved by truck from their origin to an intermodal facility, where they will then be loaded onto a train, typically by a rubber tired gantry crane, for the bulk of their journey. Alternatively, trailers may be driven onto the flatcars via ramps by a terminal tractor. Near the destination, the trailers are unloaded at another facility and brought to their final destination by a tractor unit.
The geometric design of roads is the branch of highway engineering concerned with the positioning of the physical elements of the roadway according to standards and constraints. The basic objectives in geometric design are to optimize efficiency and safety while minimizing cost and environmental damage. Geometric design also affects an emerging fifth objective called "livability," which is defined as designing roads to foster broader community goals, including providing access to employment, schools, businesses and residences, accommodate a range of travel modes such as walking, bicycling, transit, and automobiles, and minimizing fuel use, emissions and environmental damage.
On May 23, 2013, at approximately 7:00 pm PDT, a span of the bridge carrying Interstate 5 over the Skagit River in the U.S. state of Washington collapsed. Three people in two different vehicles fell into the river below and were rescued by boat, escaping serious injury. The cause of the catastrophic failure was determined to be an oversize load striking several of the bridge's overhead support beams, leading to an immediate collapse of the northernmost span.
A tell-tale, also known as a bridge warning, is a series of ropes suspended over railway tracks to give warning to the engineer, and more importantly the brakeman who may be scampering across the tops of the cars, that the train is approaching a low-clearance obstacle, such as a tunnel or a bridge. In the US, a standard tell-tale design had ropes on 3 in (7.6 cm) centers for a width of 8 ft (2.4 m) over the track, the bottom of the ropes 6 in (15 cm) lower than the height of the obstruction, and placed at least 100 ft (30 m) before the obstruction.
Bridge strike or tunnel strike is a type of transport accident in which a vehicle collides with a bridge, overpass, or tunnel structure. Bridge-strike road accidents, in which an over-height vehicle collides with the underside of the structure, occur frequently and are a major issue worldwide. In waterways, the term encompasses water vessel–bridge collisions, including bridge span and support structure collisions.