Coherent effects in semiconductor optics

Last updated

The interaction of matter with light, i.e., electromagnetic fields, is able to generate a coherent superposition of excited quantum states in the material. Coherent denotes the fact that the material excitations have a well defined phase relation which originates from the phase of the incident electromagnetic wave. Macroscopically, the superposition state of the material results in an optical polarization, i.e., a rapidly oscillating dipole density. The optical polarization is a genuine non-equilibrium quantity that decays to zero when the excited system relaxes to its equilibrium state after the electromagnetic pulse is switched off. Due to this decay which is called dephasing, coherent effects are observable only for a certain temporal duration after pulsed photoexcitation. Various materials such as atoms, molecules, metals, insulators, semiconductors are studied using coherent optical spectroscopy and such experiments and their theoretical analysis has revealed a wealth of insights on the involved matter states and their dynamical evolution.

Contents

This article focusses on coherent optical effects in semiconductors and semiconductor nanostructures. After an introduction into the basic principles, the semiconductor Bloch equations (abbreviated as SBEs) [1] [2] [3] [4] [5] which are able to theoretically describe coherent semiconductor optics on the basis of a fully microscopic many-body quantum theory are introduced. Then, a few prominent examples for coherent effects in semiconductor optics are described all of which can be understood theoretically on the basis of the SBEs.

Starting point

Macroscopically, Maxwell's equations show that in the absence of free charges and currents an electromagnetic field interacts with matter via the optical polarization . The wave equation for the electric field reads and shows that the second derivative with respect to time of , i.e., , appears as a source term in the wave equation for the electric field . Thus, for optically thin samples and measurements performed in the far-field, i.e., at distances significantly exceeding the optical wavelength , the emitted electric field resulting from the polarization is proportional to its second time derivative, i.e., . Therefore, measuring the dynamics of the emitted field provides direct information on the temporal evolution of the optical material polarization .

Microscopically, the optical polarization arises from quantum mechanical transitions between different states of the material system. For the case of semiconductors, electromagnetic radiation with optical frequencies is able to move electrons from the valence () to the conduction () band. The macroscopic polarization is computed by summing over all microscopic transition dipoles via , [2] where is the dipole matrix element which determines the strength of individual transitions between the states and , denotes the complex conjugate, and is the appropriately chosen system's volume. If and are the energies of the conduction and valence band states, their dynamic quantum mechanical evolution is according to the Schrödinger equation given by phase factors and , respectively. The superposition state described by is evolving in time according to . Assuming that we start at with , we have for the optical polarization

.

Thus, is given by a summation over the microscopic transition dipoles which all oscillate with frequencies corresponding to the energy differences between the involved quantum states. Clearly, the optical polarization is a coherent quantity which is characterized by an amplitude and a phase. Depending on the phase relationships of the microscopic transition dipoles, one may obtain constructive or destructive interference, in which the microscopic dipoles are in or out of phase, respectively, and temporal interference phenomena like quantum beats, in which the modulus of varies as function of time.

Ignoring many-body effects and the coupling to other quasi particles and to reservoirs, the dynamics of photoexcited two-level systems can be described by a set of two equations, the so-called optical Bloch equations. [6] These equations are named after Felix Bloch who formulated them in order to analyze the dynamics of spin systems in nuclear magnetic resonance. The two-level Bloch equations read

and

Here, denotes the energy difference between the two states and is the inversion, i.e., the difference in the occupations of the upper and the lower states. The electric field couples the microscopic polarization to the product of the Rabi energy and the inversion . In the absence of the driving electric field, i.e., for , the Bloch equation for describes an oscillation, i.e., .

The optical Bloch equations enable a transparent analysis of several nonlinear optical experiments. They are, however, only well suited for systems with optical transitions between isolated levels in which many-body interactions are of minor importance as is sometimes the case in atoms or small molecules. In solid state systems, such as semiconductors and semiconductor nanostructures, an adequate description of the many-body Coulomb interaction and the coupling to additional degrees of freedom is essential and thus the optical Bloch equations are not applicable.

The semiconductor Bloch equations (SBEs)

For a realistic description of optical processes in solid materials, it is essential to go beyond the simple picture of the optical Bloch equations and to treat many-body interactions that describe the coupling among the elementary material excitations by, e.g., the see article Coulomb interaction between the electrons and the coupling to other degrees of freedom, such as lattice vibrations, i.e., the electron-phonon coupling. Within a semiclassical approach, where the light field is treated as a classical electromagnetic field and the material excitations are described quantum mechanically, all above mentioned effects can be treated microscopically on the basis of a many-body quantum theory. For semiconductors the resulting system of equations are known as the semiconductor Bloch equations. For the simplest case of a two-band model of a semiconductor, the SBEs can be written schematically as [2]

Here is the microscopic polarization and and are the electron occupations in the conduction and valence bands ( and ), respectively, and denotes the crystal momentum. As a result of the many-body Coulomb interaction and possibly further interaction processes, the transition energy and the Rabi energy both depend on the state of the excited system, i.e., they are functions of the time-dependent polarizations and occupations and , respectively, at all crystal momenta .

Due to this coupling among the excitations for all values of the crystal momentum , the optical excitations in semiconductor cannot be described on the level of isolated optical transitions but have to be treated as an interacting many-body quantum system.

A prominent and important result of the Coulomb interaction among the photoexcitations is the appearance of strongly absorbing discrete excitonic resonances which show up in the absorption spectra of semiconductors spectrally below the fundamental band gap frequency. Since an exciton consists of a negatively charged conduction band electron and a positively charged valence band hole (i.e., an electron missing in the valence band) which attract each other via the Coulomb interaction, excitons have a hydrogenic series of discrete absorption lines. Due to the optical selection rules of typical III-V semiconductors such as Galliumarsenide (GaAs) only the s-states, i.e., 1s, 2s, etc., can be optically excited and detected, see article on Wannier equation.

The many-body Coulomb interaction leads to significant complications since it results in an infinite hierarchy of dynamic equations for the microscopic correlation functions that describe the nonlinear optical response. The terms given explicitly in the SBEs above arise from a treatment of the Coulomb interaction in the time-dependent Hartree–Fock approximation. Whereas this level is sufficient to describe excitonic resonances, there are several further effects, e.g., excitation-induced dephasing, contributions from higher-order correlations like excitonic populations and biexcitonic resonances, which require one to treat so-called many-body correlation effects that are by definition beyond the Hartree–Fock level. These contributions are formally included in the SBEs given above in the terms denoted by .

The systematic truncation of the many-body hierarchy and the development and the analysis of controlled approximations schemes is an important topic in the microscopic theory of the optical processes in condensed matter systems. Depending on the particular system and the excitation conditions several approximations schemes have been developed and applied. For highly excited systems, it is often sufficient to describe many-body Coulomb correlations using the second order Born approximation. [7] Such calculations were, in particular, able to successfully describe the spectra of semiconductor lasers, see article on semiconductor laser theory. In the limit of weak light intensities, signature of exciton complexes, in particular, biexcitons, in the coherent nonlinear response have been analyzed using the dynamics controlled truncation scheme. [8] [9] These two approaches and several other approximation schemes can be viewed as special cases of the so-called cluster expansion [10] in which the nonlinear optical response is classified by correlation functions which explicitly take into account interactions between a certain maximum number of particles and factorize larger correlation functions into products of lower order ones.

Selected coherent effects

By nonlinear optical spectroscopy using ultrafast laser pulses with durations on the order of ten to hundreds of femtoseconds, several coherent effects have been observed and interpreted. Such studies and their proper theoretical analysis have revealed a wealth of information on the nature of the photoexcited quantum states, the coupling among them, and their dynamical evolution on ultrashort time scales. In the following, a few important effects are briefly described.

Quantum beats involving excitons and exciton complexes

Quantum beats are observable in systems in which the total optical polarization is due to a finite number of discrete transition frequencies which are quantum mechanically coupled, e.g., by common ground or excited states. [11] [12] [13] Assuming for simplicity that all these transitions have the same dipole matrix element, after excitation with a short laser pulse at the optical polarization of the system evolves as

,

where the index labels the participating transitions. A finite number of frequencies results in temporal modulations of the squared modulus of the polarization and thus of the intensity of the emitted electromagnetic field with time periods

.

For the case of just two frequencies the squared modulus of the polarization is proportional to

,

i.e., due to the interference of two contributions with the same amplitude but different frequencies, the polarization varies between a maximum and zero.

In semiconductors and semiconductor heterostructures, such as quantum wells, nonlinear optical quantum-beat spectroscopy has been widely used to investigate the temporal dynamics of excitonic resonances. In particular, the consequences of many-body effects which depending on the excitation conditions may lead to, e.g., a coupling among different excitonic resonances via biexcitons and other Coulomb correlation contributions and to a decay of the coherent dynamics by scattering and dephasing processes, has been explored in many pump-probe and four-wave-mixing measurements. The theoretical analysis of such experiments in semiconductors requires a treatment on the basis of quantum mechanical many-body theory as is provided by the SBEs with many-body correlations incorporated on an adequate level. [1] [2] [3]

Photon echoes of excitons

In nonlinear optics it is possible to reverse the destructive interference of so-called inhomogeneously broadened systems which contain a distribution of uncoupled subsystems with different resonance frequencies. For example, consider a four-wave-mixing experiment in which the first short laser pulse excites all transitions at . As a result of the destructive interference between the different frequencies the overall polarization decays to zero. A second pulse arriving at is able to conjugate the phases of the individual microscopic polarizations, i.e., , of the inhomogeneously broadened system. The subsequent unperturbed dynamical evolution of the polarizations leads to rephasing such that all polarization are in phase at which results in a measurable macroscopic signal. Thus, this so-called photon echo occurs since all individual polarizations are in phase and add up constructively at . [6] Since the rephasing is only possible if the polarizations remain coherent, the loss of coherence can be determined by measuring the decay of the photon echo amplitude with increasing time delay.

When photon echo experiments are performed in semiconductors with exciton resonances, [14] [15] [16] it is essential to include many-body effects in the theoretical analysis since they may qualitatively alter the dynamics. For example, numerical solutions of the SBEs have demonstrated that the dynamical reduction of the band gap which originates from the Coulomb interaction among the photoexcited electrons and holes is able to generate a photon echo even for resonant excitation of a single discrete exciton resonance with a pulse of sufficient intensity. [17]

Besides the rather simple effect of inhomogeneous broadening, spatial fluctuations of the energy, i.e., disorder, which in semiconductor nanostructure may, e.g., arise from imperfection of the interfaces between different materials, can also lead to a decay of the photon echo amplitude with increasing time delay. To consistently treat this phenomenon of disorder induced dephasing the SBEs need to be solved including biexciton correlations. As shown in Ref. [18] such a microscopic theoretical approach is able to describe disorder induced dephasing in good agreement with experimental results.

The excitonic optical Stark effect

In a pump-probe experiment one excites the system with a pump pulse () and probes its dynamics with a (weak) test pulse (). With such experiments one can measure the so-called differential absorption which is defined as the difference between the probe absorption in the presence of the pump and the probe absorption without the pump .

For resonant pumping of an optical resonance and when the pump precedes the test, the absorption change is usually negative in the vicinity of the resonance frequency. This effect called bleaching arises from the fact that the excitation of the system with the pump pulse reduces the absorbance of the test pulse. There may also be positive contributions to spectrally near the original absorption line due to resonance broadening and at other spectral positions due to excited-state absorption, i.e., optical transitions to states such as biexcitons which are only possible if the system is in an excited state. The bleaching and the positive contributions are generally present in both coherent and incoherent situations where the polarization vanishes but occupations in excited states are present.

For detuned pumping, i.e., when the frequency of the pump field is not identical with the frequency of the material transition, the resonance frequency shifts as a result of the light-matter coupling, an effect known as the optical Stark effect. The optical Stark effect requires coherence i.e., a non vanishing optical polarization induced be the pump pulse, and thus decreases with increasing time delay between the pump and probe pulses and vanishes if the system has returned to its ground state.

As can be shown by solving the optical Bloch equations for a two-level system due to the optical Stark effect the resonance frequency should shift to higher values, if the pump frequency is smaller than the resonance frequency and vice versa. [6] This is also the typical result of experiments performed on excitons in semiconductors. [19] [20] [21] The fact that in certain situations such predictions which are based on simple models fail to even qualitatively describe experiments in semiconductors and semiconductor nanostructures has received significant attention. Such deviations are because in semiconductors typically many-body effects dominate the optical response and therefore it is required to solve the SBEs instead of the optical Bloch equations to obtain an adequate understanding.[ clarification needed ] An important example was presented in Ref. [22] where it was shown that many-body correlations arising from biexcitons are able to reverse the sign of the optical Stark effect. In contrast to the optical Bloch equations, the SBEs including coherent biexcitonic correlations were able to properly describe the experiments performed on semiconductor quantum wells.

Superradiance of excitons

Consider two-level systems at different positions in space. Maxwell's equations lead to a coupling among all the optical resonances since the field emitted from a specific resonance interferes with the emitted fields of all other resonances. As a result, the system is characterized by eigenmodes originating from the radiatively coupled optical resonances.

A spectacular situation arises if identical two-level systems are regularly arranged with distances that equals an integer multiple of , where is the optical wavelength. In this case, the emitted fields of all resonances interfere constructively and the system behaves effectively as a single system with a -times stronger optical polarization. Since the intensity of the emitted electromagnetic field is proportional to the squared modulus of the polarization, it scales initially as .

Due to the cooperativity that originates from the coherent coupling of the subsystems, the radiative decay rate is increased by , i.e., where is the radiative decay of a single two-level system. Thus the coherent optical polarization decays -times faster proportional to than that of an isolated system. As a result, the time integrated emitted field intensity scales as , since the initial factor is multiplied by which arises from the time integral over the enhanced radiative decay.

This effect of superradiance [23] has been demonstrated by monitoring the decay of the exciton polarization in suitably arranged semiconductor multiple quantum wells. Due to superradiance introduced by the coherent radiative coupling among the quantum wells, the decay rate increases proportional to the number of quantum wells and is thus significantly more rapid than for a single quantum well. [24] The theoretical analysis of this phenomenon requires a consistent solution of Maxwell's equations together with the SBEs.

Concluding remarks

The few examples given above represent only a small subset of several further phenomena which demonstrate that the coherent optical response of semiconductors and semiconductor nanostructures is strongly influenced by many-body effects. Other interesting research directions which similarly require an adequate theoretical analysis including many-body interactions are, e.g., phototransport phenomena where optical fields generate and/or probe electronic currents, the combined spectroscopy with optical and terahertz fields, see article terahertz spectroscopy and technology, and the rapidly developing area of semiconductor quantum optics, see article semiconductor quantum optics with dots.

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

Spontaneous emission is the process in which a quantum mechanical system transits from an excited energy state to a lower energy state and emits a quantized amount of energy in the form of a photon. Spontaneous emission is ultimately responsible for most of the light we see all around us; it is so ubiquitous that there are many names given to what is essentially the same process. If atoms are excited by some means other than heating, the spontaneous emission is called luminescence. For example, fireflies are luminescent. And there are different forms of luminescence depending on how excited atoms are produced. If the excitation is effected by the absorption of radiation the spontaneous emission is called fluorescence. Sometimes molecules have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called phosphorescence. Figurines that glow in the dark are phosphorescent. Lasers start via spontaneous emission, then during continuous operation work by stimulated emission.

<span class="mw-page-title-main">Photoluminescence</span> Light emission from substances after they absorb photons

Photoluminescence is light emission from any form of matter after the absorption of photons. It is one of many forms of luminescence and is initiated by photoexcitation, hence the prefix photo-. Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.

<span class="mw-page-title-main">Polaron</span> Quasiparticle in condensed matter physics

A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.

In quantum physics, Fermi's golden rule is a formula that describes the transition rate from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation. This transition rate is effectively independent of time and is proportional to the strength of the coupling between the initial and final states of the system as well as the density of states. It is also applicable when the final state is discrete, i.e. it is not part of a continuum, if there is some decoherence in the process, like relaxation or collision of the atoms, or like noise in the perturbation, in which case the density of states is replaced by the reciprocal of the decoherence bandwidth.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

The Franz–Keldysh effect is a change in optical absorption by a semiconductor when an electric field is applied. The effect is named after the German physicist Walter Franz and Russian physicist Leonid Keldysh.

<span class="mw-page-title-main">Quantum vortex</span> Quantized flux circulation of some physical quantity

In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was first predicted by Lars Onsager in 1949 in connection with superfluid helium. Onsager reasoned that quantisation of vorticity is a direct consequence of the existence of a superfluid order parameter as a spatially continuous wavefunction. Onsager also pointed out that quantum vortices describe the circulation of superfluid and conjectured that their excitations are responsible for superfluid phase transitions. These ideas of Onsager were further developed by Richard Feynman in 1955 and in 1957 were applied to describe the magnetic phase diagram of type-II superconductors by Alexei Alexeyevich Abrikosov. In 1935 Fritz London published a very closely related work on magnetic flux quantization in superconductors. London's fluxoid can also be viewed as a quantum vortex.

The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

The semiconductor Bloch equations describe the optical response of semiconductors excited by coherent classical light sources, such as lasers. They are based on a full quantum theory, and form a closed set of integro-differential equations for the quantum dynamics of microscopic polarization and charge carrier distribution. The SBEs are named after the structural analogy to the optical Bloch equations that describe the excitation dynamics in a two-level atom interacting with a classical electromagnetic field. As the major complication beyond the atomic approach, the SBEs must address the many-body interactions resulting from Coulomb force among charges and the coupling among lattice vibrations and electrons.

The semiconductor luminescence equations (SLEs) describe luminescence of semiconductors resulting from spontaneous recombination of electronic excitations, producing a flux of spontaneously emitted light. This description established the first step toward semiconductor quantum optics because the SLEs simultaneously includes the quantized light–matter interaction and the Coulomb-interaction coupling among electronic excitations within a semiconductor. The SLEs are one of the most accurate methods to describe light emission in semiconductors and they are suited for a systematic modeling of semiconductor emission ranging from excitonic luminescence to lasers.

The Elliott formula describes analytically, or with few adjustable parameters such as the dephasing constant, the light absorption or emission spectra of solids. It was originally derived by Roger James Elliott to describe linear absorption based on properties of a single electron–hole pair. The analysis can be extended to a many-body investigation with full predictive powers when all parameters are computed microscopically using, e.g., the semiconductor Bloch equations or the semiconductor luminescence equations.

The cluster-expansion approach is a technique in quantum mechanics that systematically truncates the BBGKY hierarchy problem that arises when quantum dynamics of interacting systems is solved. This method is well suited for producing a closed set of numerically computable equations that can be applied to analyze a great variety of many-body and/or quantum-optical problems. For example, it is widely applied in semiconductor quantum optics and it can be applied to generalize the semiconductor Bloch equations and semiconductor luminescence equations.

<span class="mw-page-title-main">Semiconductor laser theory</span> Theory of laser diodes

Semiconductor lasers or laser diodes play an important part in our everyday lives by providing cheap and compact-size lasers. They consist of complex multi-layer structures requiring nanometer scale accuracy and an elaborate design. Their theoretical description is important not only from a fundamental point of view, but also in order to generate new and improved designs. It is common to all systems that the laser is an inverted carrier density system. The carrier inversion results in an electromagnetic polarization which drives an electric field . In most cases, the electric field is confined in a resonator, the properties of which are also important factors for laser performance.

Optical gain is the most important requirement for the realization of a semiconductor laser because it describes the optical amplification in the semiconductor material. This optical gain is due to stimulated emission associated with light emission created by recombination of electrons and holes. While in other laser materials like in gas lasers or solid state lasers, the processes associated with optical gain are rather simple, in semiconductors this is a complex many-body problem of interacting photons, electrons, and holes. Accordingly, understanding these processes is a major objective as being a basic requirement for device optimization. This task can be solved by development of appropriate theoretical models to describe the semiconductor optical gain and by comparison of the predictions of these models with experimental results found.

The Wannier equation describes a quantum mechanical eigenvalue problem in solids where an electron in a conduction band and an electronic vacancy within a valence band attract each other via the Coulomb interaction. For one electron and one hole, this problem is analogous to the Schrödinger equation of the hydrogen atom; and the bound-state solutions are called excitons. When an exciton's radius extends over several unit cells, it is referred to as a Wannier exciton in contrast to Frenkel excitons whose size is comparable with the unit cell. An excited solid typically contains many electrons and holes; this modifies the Wannier equation considerably. The resulting generalized Wannier equation can be determined from the homogeneous part of the semiconductor Bloch equations or the semiconductor luminescence equations.

<span class="mw-page-title-main">Superradiant phase transition</span> Process in quantum optics

In quantum optics, a superradiant phase transition is a phase transition that occurs in a collection of fluorescent emitters, between a state containing few electromagnetic excitations and a superradiant state with many electromagnetic excitations trapped inside the emitters. The superradiant state is made thermodynamically favorable by having strong, coherent interactions between the emitters.

Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba.

<span class="mw-page-title-main">Lorentz oscillator model</span> Theoretical model describing the optical response of bound charges

The Lorentz oscillator model describes the optical response of bound charges. The model is named after the Dutch physicist Hendrik Antoon Lorentz. It is a classical, phenomenological model for materials with characteristic resonance frequencies for optical absorption, e.g. ionic and molecular vibrations, interband transitions (semiconductors), phonons, and collective excitations.

References

  1. 1 2 Schäfer, W.; Wegener, M. (2002). Semiconductor Optics and Transport Phenomena. Springer. ISBN   3540616144.
  2. 1 2 3 4 Haug, H.; Koch, S. W. (2009). Quantum Theory of the Optical and Electronic Properties of Semiconductors (5th ed.). World Scientific. ISBN   9812838848.
  3. 1 2 Meier, T.; Thomas, P.; Koch, S. W. (2007). Coherent Semiconductor Optics: From Basic Concepts to Nanostructure Applications (1st ed.). Springer. ISBN   3642068960.
  4. Lindberg, M.; Koch, S. (1988). "Effective Bloch equations for semiconductors". Physical Review B38 (5): 3342–3350. doi:10.1103/PhysRevB.38.3342
  5. Schmitt-Rink, S.; Chemla, D.; Haug, H. (1988). "Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors". Physical Review B37 (2): 941–955. doi:10.1103/PhysRevB.37.941
  6. 1 2 3 Allen, L.; Eberly, J. H. (1987). Optical Resonance and Two-Level Atoms. Dover Publications. ISBN   0486655334.
  7. Jahnke, F.; Kira, M.; Koch, S. W.; Tai, K. (1996). "Excitonic Nonlinearities of Semiconductor Microcavities in the Nonperturbative Regime". Physical Review Letters77 (26): 5257–5260. doi:10.1103/PhysRevLett.77.5257
  8. Lindberg, M.; Hu, Y.; Binder, R.; Koch, S. (1994). "χ(3) formalism in optically excited semiconductors and its applications in four-wave-mixing spectroscopy". Physical Review B50 (24): 18060–18072. doi:10.1103/PhysRevB.50.18060
  9. Axt, V. M.; Stahl, A. (1994). "The role of the biexciton in a dynamic density matrix theory of the semiconductor band edge". Zeitschrift für Physik B Condensed Matter93 (2): 205–211. doi:10.1007/BF01316964
  10. Kira, M.; Koch, S. W. (2011). Semiconductor Quantum Optics. Cambridge University Press. ISBN   978-0521875097.
  11. Koch, M.; Feldmann, J.; von Plessen, G.; Göbel, E.; Thomas, P.; Köhler, K. (1992). "Quantum beats versus polarization interference: An experimental distinction". Physical Review Letters69 (25): 3631–3634. doi:10.1103/PhysRevLett.69.3631
  12. Erland, J.; Balslev, I. (1993). "Theory of quantum beat and polarization interference in four-wave mixing". Physical Review A48 (3): R1765–R1768. doi:10.1103/PhysRevA.48.R1765
  13. Koch, M.; von Plessen, G.; Feldman, J.; Göbel, E. O. (1996). "Excitonic quantum beats in semiconductor quantum-well structures". Chemical Physics210 (1-2): 367–388. doi:10.1016/0301-0104(96)00135-8
  14. Noll, G.; Siegner, U.; Shevel, S.; Göbel, E. (1990). "Picosecond stimulated photon echo due to intrinsic excitations in semiconductor mixed crystals". Physical Review Letters64 (7): 792–795. doi:10.1103/PhysRevLett.64.792
  15. Webb, M.; Cundiff, S.; Steel, D. (1991). "Observation of time-resolved picosecond stimulated photon echoes and free polarization decay in GaAs/AlGaAs multiple quantum wells". Physical Review Letters66 (7): 934–937. doi:10.1103/PhysRevLett.66.934
  16. Koch, M.; Weber, D.; Feldmann, J.; Göbel, E.; Meier, T.; Schulze, A.; Thomas, P.; Schmitt-Rink, S. et al. (1993). "Subpicosecond photon-echo spectroscopy on GaAs/AlAs short-period superlattices". Physical Review B47 (3): 1532–1539. doi:10.1103/PhysRevB.47.1532
  17. Lindberg, M.; Binder, R.; Koch, S. (1992). "Theory of the semiconductor photon echo". Physical Review A45 (3): 1865–1875. doi:10.1103/PhysRevA.45.1865
  18. Weiser, S.; Meier, T.; Möbius, J.; Euteneuer, A.; Mayer, E.; Stolz, W.; Hofmann, M.; Rühle, W.; Thomas, P.; Koch, S. (2000). "Disorder-induced dephasing in semiconductors". Physical Review B61 (19): 13088–13098. doi:10.1103/PhysRevB.61.13088
  19. Fröhlich, D.; Nöthe, A.; Reimann, K. (1985). "Observation of the Resonant Optical Stark Effect in a Semiconductor". Physical Review Letters55 (12): 1335–1337. doi:10.1103/PhysRevLett.55.1335
  20. Mysyrowicz, A.; Hulin, D.; Antonetti, A.; Migus, A.; Masselink, W.; Morkoç, H. (1986). ""Dressed Excitons" in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time". Physical Review Letters56 (25): 2748–2751. doi:10.1103/PhysRevLett.56.2748
  21. Von Lehmen, A.; Chemla, D. S.; Zucker, J. E.; Heritage, J. P. (1986). "Optical Stark effect on excitons in GaAs quantum wells". Optics Letters11 (10): 609. doi:10.1364/OL.11.000609
  22. Sieh, C.; Meier, T.; Jahnke, F.; Knorr, A.; Koch, S.; Brick, P.; Hübner, M.; Ell, C.; Prineas, J.; Khitrova, G.; Gibbs, H. (1999). "Coulomb Memory Signatures in the Excitonic Optical Stark Effect". Physical Review Letters82 (15): 3112–3115. doi:10.1103/PhysRevLett.82.3112
  23. Dicke, R. (1954). "Coherence in Spontaneous Radiation Processes". Physical Review93 (1): 99–110. doi:10.1103/PhysRev.93.99
  24. Hübner, M.; Kuhl, J.; Stroucken, T.; Knorr, A.; Koch, S.; Hey, R.; Ploog, K. (1996). "Collective Effects of Excitons in Multiple-Quantum-Well Bragg and Anti-Bragg Structures". Physical Review Letters76 (22): 4199–4202. doi:10.1103/PhysRevLett.76.4199