The Cohesion number (Coh) is a useful dimensionless number in particle technology by which the cohesivity of different powders can be compared. This is especially useful in DEM simulations (Discrete Element Method) of granular materials where scaling of the size and stiffness of the particles are inevitable due to the computationally demanding nature of the DEM modelling.
In simulation of granular materials, scaling the particle size with regards to the other particles physical and mechanical properties is a challenging job. Especially in simulation of cohesive powders, lack of a robust criterion for tuning the level of the surface energy of the particles can waste enormous amount of time during the process of calibration. The Bond number [1] has been used traditionally in this regards, where the significance of the adhesive force (pull-off force) is compared with the particles gravitational force (weight); nevertheless, the influence of the materials properties, particularly the particles stiffness, is not comprehensively observed in this number. The particles stiffness, which is not present in the Bond number, has a considerable impact on how particles respond to an applied force. If the forces in the Bond number are substituted with potential and cohesion energies, a new dimensionless number will be formed whereby the effect of the particles stiffness is also considered. This was firstly proposed by Behjani et al. [2] where they introduced a dimensionless number titled as the Cohesion number.
The Cohesion number is a dimensionless number which shows the ratio of the work required for detaching two arbitrary solid particles (work of cohesion) to their gravitational potential energy as expressed below,
For example, in the JKR contact model [3] the work of cohesion is [4] by which the Cohesion number is derived as follows:
Mass can be shown in the form of density and volume and the constant number can be eliminated,
The final version of the Cohesion number is as following:
is the particle density
is the gravity
is the interfacial energy
is the equivalent Young’s modulus:
is the material Poisson's ratio
shows the equivalent radius:
This number is dependent on the particles surface energy, particles size, particle density, gravity, and the Young’s modulus. It well justifies that the materials having lower stiffness become “stickier” if adhesive and it is a useful scaling method for the DEM simulations at which Young’s modulus is selected smaller than the real value in order to increase the computational speed. [5] Recently, a rigorous analysis of the contact stiffness reduction for the adhesive contacts to speed up the DEM calculations shows the same fractional form. [6]
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
The speed of sound is the distance travelled per unit time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 metres per second, or a kilometre in 2.9 s or a mile in 4.7 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating.
The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).
In general theory of relativity the Einstein field equations relate the geometry of space-time with the distribution of matter within it.
Adhesion is the tendency of dissimilar particles or surfaces to cling to one another.
The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the principle of least action. With the (− + + +) metric signature, the gravitational part of the action is given as
In general relativity, Schwarzschild geodesics describe the motion of particles of infinitesimal mass in the gravitational field of a central fixed mass . Schwarzschild geodesics have been pivotal in the validation of Einstein's theory of general relativity. For example, they provide accurate predictions of the anomalous precession of the planets in the Solar System, and of the deflection of light by gravity.
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels and stainless steels. In superalloys, it is known to cause yield strength anomaly providing excellent high-temperature strength.
Newton's constant or Einstein's gravitational constant, denoted κ (kappa), is the coupling constant appearing in the Einstein field equation which can be written:
The mathematics of general relativity refers to various mathematical structures and techniques that are used in studying and formulating Albert Einstein's theory of general relativity. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.
Post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, sometimes it is preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.
In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.
In fluid dynamics the Eötvös number (Eo), also called the Bond number (Bo), is a dimensionless number measuring the importance of gravitational forces compared to surface tension forces and is used to characterize the shape of bubbles or drops moving in a surrounding fluid. The two names commemorate the Hungarian physicist Loránd Eötvös (1848–1919) and the English physicist Wilfrid Noel Bond (1897–1937), respectively. The term Eötvös number is more frequently used in Europe, while Bond number is commonly used in other parts of the world.
In stellar physics, the Jeans instability causes the collapse of interstellar gas clouds and subsequent star formation, named after James Jeans. It occurs when the internal gas pressure is not strong enough to prevent gravitational collapse of a region filled with matter. For stability, the cloud must be in hydrostatic equilibrium, which in case of a spherical cloud translates to:
In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor that incorporates the energy–momentum of gravity. It allows the energy–momentum of a system of gravitating matter to be defined. In particular it allows the total of matter plus the gravitating energy–momentum to form a conserved current within the framework of general relativity, so that the total energy–momentum crossing the hypersurface of any compact space–time hypervolume vanishes.
In quantum electrodynamics, Bhabha scattering is the electron-positron scattering process:
Contact mechanics is the study of the deformation of solids that touch each other at one or more points. A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces and frictional stresses acting tangentially between the surfaces. This page focuses mainly on the normal direction, i.e. on frictionless contact mechanics. Frictional contact mechanics is discussed separately. Normal stresses are caused by applied forces and by the adhesion present on surfaces in close contact even if they are clean and dry.
The Cauchy number (Ca) is a dimensionless number in continuum mechanics used in the study of compressible flows. It is named after the French mathematician Augustin Louis Cauchy. When the compressibility is important the elastic forces must be considered along with inertial forces for dynamic similarity. Thus, the Cauchy Number is defined as the ratio between inertial and the compressibility force in a flow and can be expressed as
Newton–Cartan theory is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by Dautcourt, Dixon, Dombrowski and Horneffer, Ehlers, Havas, Künzle, Lottermoser, Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.
Usually, we understand the term capillary bridge as a minimized surface of liquid or membrane, created between two rigid bodies with an arbitrary shape. Capillary bridges also may form between two liquids. Plateau defined a sequence of capillary shapes known as (1) nodoid with 'neck', (2) catenoid, (3) unduloid with 'neck', (4) cylinder, (5) unduloid with 'haunch' (6) sphere and (7) nodoid with 'haunch'. The presence of capillary bridge, depending on their shapes, can lead to attraction or repulsion between the solid bodies. The simplest cases of them are the axisymmetric ones. We distinguished three important classes of bridging, depending on connected bodies surface shapes: