Particle technology

Last updated

Particle technology is the science and technology of handling and processing particles and powders. It encompasses the production, handling, modification, and use of a wide variety of particulate materials, both wet and dry. Particle handling may include transportation and storage. Particle sizes range from nanometers to centimeters. Particles can be characterized by diverse metrics. The scope of particle technology spans many industries including chemical, petrochemical, agricultural, food, pharmaceuticals, mineral processing, civil engineering, advanced materials, energy, and the environment. [1]

Contents

Subjects of particle technology

Particle technology thus deals with:

Particle characterization

Particle size analysis schematic Particle size analysis principle - CILAS.jpg
Particle size analysis schematic

Particles are characterized by their individual size and shape, and by the distribution of these properties in bulk quantities. Spherical particles are defined by diameter or radius, and non-spherical particles are defined by the dimensions of their geometric equivalent. The space between particles in bulk means that the bulk density is less than the density of individual particles. The difference between bulk density and particle density may have implications for storage, transportation or other handling of particles. The way in which they move over each other or lock together determines stability or flowability, which is tested by the triaxial shear test.

Particle samples can be visualized using microscopy, most commonly by scanning electron microscopy (SEM) or transmission electron microscopy (TEM). [1] Both SEM and TEM can determine pore structure, surface area and structure of a particle. SEM achieves particle visualization by directing a beam of electrons at the particle sample and creating signals upon interaction with the sample, building a 3D image of the sample's topography and surface structure. TEM uses a similar beam of electrons, but the electrons are directed at a thin slice of the sample to form an image of the electrons that pass through the slice. [2] Particle microscopy can reveal properties or defects in a particle.

Optics can quantify particle size. Measuring light scattering and diffraction caused by a particle are detectable methods of identifying particle size, and are commonly used in the following techniques:

Production and applications

Many industries use particle technologies for particle transportation, separation and fluidization. [1] A variety of production methods are required for particulate materials due to the large differences between them. Three major areas of production techniques and their common applications are listed below.

Size enlargement

Agglomeration is the process of primary particles (of smaller size) coming into contact with each other and forming larger clusters. It occurs in dry powders when particle size is smaller than around 10 μm or when conditions are humid, and in liquids when particles have zero surface charge. It is often induced by Brownian motion in liquids. [5]

Aggregation is another process of forming clusters from particles, but where the particles have stronger bonds due to larger surface area of contact. It occurs mostly in homogenous liquid mixtures. [6]

Crystallization, either in batches or continuous processes, allows the formation of high-purity crystalline particles from solutions. The product usually has particle size in the millimeter range. [6]

Precipitation also forms particulate product from solution. It occurs from two soluble compounds forming an insoluble product in a medium, often aqueous. While the initial particle size of the precipitate formed is only in the nanometer range, the primary particles often spontaneously agglomerate or aggregate to form much larger particles. Polymerization is a special form of precipitation where minimally soluble monomers in an aqueous solution form emulsion droplets with zero solubility. [6]

Granulation is the process of forming granular material from powders or smaller particles. It occurs when a binder liquid is mixed with ingredient particles to form compact clusters. These clusters can be further processed and compressed into tablet form for other applications. [6]

Extrusion forms objects of a fixed cross-sectional shape when the starting material is pushed through a die with the desired cross-section. This technique is often used for plastic, metal and rubber granules. In the food industry, extrusion is also used extensively for making pasta, crouton, cereal, cookie dough, pet food, etc. to achieve uniformity of these items. [7]

Size reduction

Comminution is the mechanical reduction of the size of solid materials. It includes crushing, cutting, grinding, milling, vibrating, and other processes. Crushing and cutting breaks down large pieces of dry or tough material to the centimeter range. Milling can be applied to both dry and wet material, resulting in particle size in the millimeter range.[ citation needed ]

Atomization is the process of breaking liquids into a spray of much smaller droplets, like an aerosol. The resulting size of these particles or droplets is usually in the nanometer to micrometer range. There are many industrial applications of liquid atomization, including spray drying, film coating, making nano-emulsions, etc.[ citation needed ] Other applications include fire sprinklers, crop sprayers, dry shampoos, etc. [8]

Emulsification

Oil emulsion technique. Oil Emulsion Technique.png
Oil emulsion technique.

Emulsification is the process of dispersing particles from two or more immiscible liquids together. Oftentimes, one of the immiscible liquids is aqueous (water as solvent) and the other is organic (oil as solvent). Industrial processes usually involve dispersion of the organic solution into the aqueous solution by mixing with high-energy shears or strong turbulence. [9] Due to the unstable nature of emulsions, surfactants or emulsifiers are required to stabilize the final product to achieve longer shelf life. [6] Common applications of emulsions include food, pharmaceuticals and lubricants. Some examples of food emulsions are milk, mayonnaise, butter, and ice cream. Some examples of pharmaceutical and lubricant emulsions are ointments, creams, oil-soluble vitamins, and some medications. [10] [11]

Related Research Articles

An emulsion is a mixture of two or more liquids that are normally immiscible owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms colloid and emulsion are sometimes used interchangeably, emulsion should be used when both phases, dispersed and continuous, are liquids. In an emulsion, one liquid is dispersed in the other. Examples of emulsions include vinaigrettes, homogenized milk, liquid biomolecular condensates, and some cutting fluids for metal working.

<span class="mw-page-title-main">Sintering</span> Process of forming and bonding material by heat or pressure

Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plastics, and other materials. The atoms/molecules in the sintered material diffuse across the boundaries of the particles, fusing the particles together and creating a solid piece.

<span class="mw-page-title-main">Spray drying</span> Method of converting liquid or slurry to powder

Spray drying is a method of forming a dry powder from a liquid or slurry by rapidly drying with a hot gas. This is the preferred method of drying of many thermally-sensitive materials such as foods and pharmaceuticals, or materials which may require extremely consistent, fine particle size. Air is most commonly used as the heated drying medium; however, nitrogen may be used if the liquid is flammable or if the product is oxygen-sensitive.

In polymer chemistry, emulsion polymerization is a type of radical polymerization that usually starts with an emulsion incorporating water, monomers, and surfactants. The most common type of emulsion polymerization is an oil-in-water emulsion, in which droplets of monomer are emulsified in a continuous phase of water. Water-soluble polymers, such as certain polyvinyl alcohols or hydroxyethyl celluloses, can also be used to act as emulsifiers/stabilizers. The name "emulsion polymerization" is a misnomer that arises from a historical misconception. Rather than occurring in emulsion droplets, polymerization takes place in the latex/colloid particles that form spontaneously in the first few minutes of the process. These latex particles are typically 100 nm in size, and are made of many individual polymer chains. The particles are prevented from coagulating with each other because each particle is surrounded by the surfactant ('soap'); the charge on the surfactant repels other particles electrostatically. When water-soluble polymers are used as stabilizers instead of soap, the repulsion between particles arises because these water-soluble polymers form a 'hairy layer' around a particle that repels other particles, because pushing particles together would involve compressing these chains.

<span class="mw-page-title-main">Suspension (chemistry)</span> Heterogeneous mixture of solid particles dispersed in a medium

In chemistry, a suspension is a heterogeneous mixture of a fluid that contains solid particles sufficiently large for sedimentation. The particles may be visible to the naked eye, usually must be larger than one micrometer, and will eventually settle, although the mixture is only classified as a suspension when and while the particles have not settled out.

<span class="mw-page-title-main">Mixing (process engineering)</span> Process of mechanically stirring a heterogeneous mixture to homogenize it

In industrial process engineering, mixing is a unit operation that involves manipulation of a heterogeneous physical system with the intent to make it more homogeneous. Familiar examples include pumping of the water in a swimming pool to homogenize the water temperature, and the stirring of pancake batter to eliminate lumps (deagglomeration).

Microencapsulation is a process in which tiny particles or droplets are surrounded by a coating to give small capsules, with useful properties. In general, it is used to incorporate food ingredients, enzymes, cells or other materials on a micro metric scale. Microencapsulation can also be used to enclose solids, liquids, or gases inside a micrometric wall made of hard or soft soluble film, in order to reduce dosing frequency and prevent the degradation of pharmaceuticals.

In materials science, bulk density, also called apparent density, is a material property defined as the mass of the many particles of the material divided by the bulk volume. Bulk volume is defined as the total volume the particles occupy, including particle's own volume, inter-particle void volume, and the particles' internal pore volume.

<span class="mw-page-title-main">Cream (pharmacy)</span> Preparation for application to the skin or mucous membranes

A cream is a preparation usually for application to the skin. Creams for application to mucous membranes such as those of the rectum or vagina are also used. Creams may be considered pharmaceutical products, since even cosmetic creams are manufactured using techniques developed by pharmacy and unmedicated creams are highly used in a variety of skin conditions (dermatoses). The use of the finger tip unit concept may be helpful in guiding how much topical cream is required to cover different areas.

<span class="mw-page-title-main">Particle-size distribution</span> Function representing relative sizes of particles in a system

In granulometry, the particle-size distribution (PSD) of a powder, or granular material, or particles dispersed in fluid, is a list of values or a mathematical function that defines the relative amount, typically by mass, of particles present according to size. Significant energy is usually required to disintegrate soil, etc. particles into the PSD that is then called a grain size distribution.

<span class="mw-page-title-main">Nano spray dryer</span> Spray drying to create nanoparticles

Nano spray dryers refer to using spray drying to create particles in the nanometer range. Spray drying is a gentle method for producing powders with a defined particle size out of solutions, dispersions, and emulsions which is widely used for pharmaceuticals, food, biotechnology, and other industrial materials synthesis.

<span class="mw-page-title-main">Pharmaceutical manufacturing</span> Synthesis of pharmaceutical drugs

Pharmaceutical manufacturing is the process of industrial-scale synthesis of pharmaceutical drugs as part of the pharmaceutical industry. The process of drug manufacturing can be broken down into a series of unit operations, such as milling, granulation, coating, tablet pressing, and others.

<span class="mw-page-title-main">Granulation</span> Forming grains or granules from a powdery or solid substance

Granulation is the process of forming grains or granules from a powdery or solid substance, producing a granular material. It is applied in several technological processes in the chemical and pharmaceutical industries. Typically, granulation involves agglomeration of fine particles into larger granules, typically of size range between 0.2 and 4.0 mm depending on their subsequent use. Less commonly, it involves shredding or grinding solid material into finer granules or pellets.

A nanocapsule is a nanoscale shell made from a nontoxic polymer. They are vesicular systems made of a polymeric membrane which encapsulates an inner liquid core at the nanoscale. Nanocapsules have many uses, including promising medical applications for drug delivery, food enhancement, nutraceuticals, and for self-healing materials. The benefits of encapsulation methods are for protection of these substances to protect in the adverse environment, for controlled release, and for precision targeting. Nanocapsules can potentially be used as MRI-guided nanorobots or nanobots, although challenges remain.

<span class="mw-page-title-main">Instant tea</span> Concentrated dry tea beverage mix

Instant tea is a powdered mix in which water is added, in order to reconstitute it into a cup of tea. The earliest form of instant tea was developed in the United Kingdom in 1885. A patent was granted for a paste made of concentrated tea extract, sugar, and evaporated milk, which became tea when hot water was added. However, no notable developments were made until spray drying technology allowed for drying the tea concentrates at a temperature which did not damage the flavors of the product.

The health and safety hazards of nanomaterials include the potential toxicity of various types of nanomaterials, as well as fire and dust explosion hazards. Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, are subjects of ongoing research. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure, and dust explosion hazards, are also a concern.

Droplet-based microfluidics manipulate discrete volumes of fluids in immiscible phases with low Reynolds number and laminar flow regimes. Interest in droplet-based microfluidics systems has been growing substantially in past decades. Microdroplets offer the feasibility of handling miniature volumes of fluids conveniently, provide better mixing, encapsulation, sorting, sensing and are suitable for high throughput experiments. Two immiscible phases used for the droplet based systems are referred to as the continuous phase and dispersed phase.

<span class="mw-page-title-main">Characterization of nanoparticles</span> Measurement of physical and chemical properties of nanoparticles

The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles.,. Nanoparticles measure less than 100 nanometers in at least one of their external dimensions, and are often engineered for their unique properties. Nanoparticles are unlike conventional chemicals in that their chemical composition and concentration are not sufficient metrics for a complete description, because they vary in other physical properties such as size, shape, surface properties, crystallinity, and dispersion state.

Agglomerated food powder is a unit operation during which native particles are assembled to form bigger agglomerates, in which the original particle can still be distinguished. Agglomeration can be achieved through processes that use liquid as a binder or methods that do not involve any binder.

<span class="mw-page-title-main">Food powder</span> Form of food

Food powder is the most common format of dried solid food material that meets specific quality standards, such as moisture content, particle size, and particular morphology. Common powdery food products include milk powder, tea powder, cocoa powder, coffee powder, soybean flour, wheat flour, and chili powder. Powders are particulate discrete solid particles of size ranging from nanometres to millimetres that generally flow freely when shaken or tilted. The bulk powder properties are the combined effect of particle properties by the conversion of food products in solid state into powdery form for ease of use, processing and keeping quality. Various terms are used to indicate the particulate solids in bulk, such as powder, granules, flour and dust, though all these materials can be treated under powder category. These common terminologies are based on the size or the source of the materials.

References

  1. 1 2 3 Othmer, Kirk (November 15, 1984). Kirk-Othmer Encyclopedia of Chemical Technology (3rd ed.). John Wiley & Sons. ISBN   9780471824282.
  2. Fultz, Brent; Howe, James M., eds. (2008). Transmission Electron Microscopy and Diffractometry of Materials (Third ed.). Berlin, Heidelberg: Springer. ISBN   978-3-540-73885-5.
  3. "Measurement Principles of PDA - Dantec Dynamics". Dantec Dynamics | Precision Measurement Systems & Sensors. Retrieved 2024-11-04.
  4. "Fraunhofer Diffraction Theory and Mie Scattering Theory". www.shimadzu.com. Retrieved 2024-11-04.
  5. Grumezescu, Alexandru Mihai (2016). Fabrication and Self-Assembly of Nanobiomaterials: Applications of Nanobiomaterials. Amsterdam: William Andrew. ISBN   978-0-323-41533-0.
  6. 1 2 3 4 5 G. Merkus, Henk (2015). Production, handling and characterization of particulate materials. Particle Technology Series. New York, NY: Springer. ISBN   978-3-319-20948-7.
  7. Savastano, Holmer Jr; Fiorelli, Juliano; dos Santos, Sergio Francisco, eds. (2017). Sustainable and Nonconventional Construction Materials Using Inorganic Bonded Fiber Composites. Woodhead Publishing Series in Civil and Structural Engineering. Duxford, UK: Woodhead Publishing. ISBN   978-0-08-102001-2.
  8. Chang, Isaac; Zhao, Yuyuan (31 August 2013). Advances in Powder Metallurgy. Elsevier Science. ISBN   978-0-85709-420-9 . Retrieved 2024-12-02.
  9. Knoerzer, Kai; Juliano, Pablo; Smithers, Geoffrey W. (19 July 2016). Innovative Food Processing Technologies. Elsevier Science. ISBN   978-0-08-100294-0 . Retrieved 2024-12-02.
  10. Senieer (2022-10-21). "PHARMACEUTICAL EMULSIONS". Senieer - What You Trust. Retrieved 2024-12-02.
  11. "Understanding Emulsion Formulation | Ascendia Pharmaceuticals". ascendiapharma.com. Retrieved 2024-12-02.

Further reading