Combinatorial matrix theory

Last updated

Combinatorial matrix theory is a branch of linear algebra and combinatorics that studies matrices in terms of the patterns of nonzeros and of positive and negative values in their coefficients. [1] [2] [3]

Concepts and topics studied within combinatorial matrix theory include:

Researchers in combinatorial matrix theory include Richard A. Brualdi and Pauline van den Driessche.

References

  1. Brualdi, Richard A.; Ryser, Herbert J. (1991), Combinatorial matrix theory , Encyclopedia of Mathematics and its Applications, vol. 39, Cambridge University Press, Cambridge, doi:10.1017/CBO9781107325708, ISBN   0-521-32265-0, MR   1130611
  2. Brualdi, Richard A. (2006), Combinatorial matrix classes , Encyclopedia of Mathematics and its Applications, vol. 108, Cambridge University Press, Cambridge, doi:10.1017/CBO9780511721182, ISBN   978-0-521-86565-4, MR   2266203
  3. Brualdi, Richard A.; Carmona, Ángeles; van den Driessche, P.; Kirkland, Stephen; Stevanović, Dragan (2018), Combinatorial matrix theory: Notes of the lectures delivered at Centre de Recerca Matemàtica (CRM), Bellaterra, June 29–July 3, 2015, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Cham, p. xi+217, doi:10.1007/978-3-319-70953-6, ISBN   978-3-319-70952-9, MR   3791450