This article needs additional citations for verification .(June 2022) |
The commutation cell is the basic structure in power electronics. It is composed of two electronic switches (today, a high-power semiconductor, not a mechanical switch). It was traditionally referred to as a chopper, but since switching power supplies became a major form of power conversion, this new term has become more popular. [1]
The purpose of the commutation cell is to "chop" DC power into square wave alternating current. This is done so that an inductor and a capacitor can be used in an LC circuit to change the voltage. This is, in theory, a lossless process; in practice, efficiencies above 80-90% are routinely achieved. The output is usually run through a filter to produce clean DC power. By controlling the on and off times (the duty cycle) of the switch in the commutation cell, the output voltage can be regulated.
This basic principle is the core of most modern power supplies, from tiny DC-DC converters in portable devices to massive switching stations for high voltage DC power transmission.
A Commutation cell connects two power elements, often referred to as sources, although they can either produce or absorb power. [2]
Some requirements to connect power sources exist. The impossible configurations are listed in figure 1. They are basically:
This applies to classical sources (battery, generator) and capacitors and inductors: At a small time scale, a capacitor is identical to a voltage source and an inductor to a current source. Connecting two capacitors with different voltage levels in parallel corresponds to connecting two voltage sources, one of the forbidden connections in figure 1.
The figure 2 illustrates the poor efficiency of such a connection. One capacitor is charged to a voltage V, and is connected to a capacitor with the same capacity, but discharged.
Before the connection, the energy in the circuit is , and the quantity of charges Q is equal to , where U is the potential energy.
After the connection has been made, the quantity of charges is constant, and the total capacitance is . Therefore, the voltage across the capacitances is . The energy in the circuit is then . Therefore, half of the energy has been dissipated during the connection.
The same applies with the connections in series of two inductances. The magnetic flux () remains constant before and after the commutation. As the total inductance after the commutation is 2L, the current becomes (see figure 2). The energy before the commutation is . After, it is . Here again, half of the energy is dissipated during the commutation.
As a result, it can be seen that a commutation cell can only connect a voltage source to a current source (and vice versa). However, using inductors and capacitors, it is possible to transform the behaviour of a source: for example, two voltage sources can be connected through a converter if it uses an inductor to transfer energy.
As mentioned above, a commutation cell must be placed between a voltage and current sources. Depending on the state of the cell, both sources are either connected, or isolated. When isolated, the current source must be shorted, as it is impossible for a current to be created in an open circuit. The basic schematic of a commutation cell is therefore given in figure 3 (top). It uses two switches with opposite states: In the configuration depicted in figure 3, both sources are isolated, and the current source is shorted. Both sources are connected when the top switch is on (and the bottom switch is off).
It is impossible to have a perfect synchronization between the switches. At one point during the commutation, they would be either on (thus shorting the voltage source) or off (thus leaving the current source in an open circuit). This is why one of the switches has to be replaced by a diode. A diode is a natural commutation device, i.e., its state is controlled by the circuit itself. It will turn on or off at the exact moment it has to. The consequence of using a diode in a commutation cell is that it makes it unidirectional (see figure 3). A bidirectional cell can be built, but it is equivalent to two unidirectional cells connected in parallel.
The commutation cell can be found in any power electronic converter. Some examples are given in figure 4. As can be seen, a "current source" (actually a loop that contains an inductance) is always connected between the middle point and one of the external connections of the commutation cell, while a voltage source (or a capacitor, or a connection in series of voltage source and capacitor) is always connected to the two external connections. [3]
In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing work. Apparent power is the product of root mean square (RMS) current and voltage. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power may be greater than the real power, so more current flows in the circuit than would be required to transfer real power alone. A power factor magnitude of less than one indicates the voltage and current are not in phase, reducing the average product of the two. A negative power factor occurs when the device generates real power, which then flows back towards the source.
A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation is performed by an inverter.
A power inverter, inverter, or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of rectifiers which were originally large electromechanical devices converting AC to DC.
A switched-mode power supply (SMPS), also called switching-mode power supply, switch-mode power supply, switched power supply, or simply switcher, is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently.
Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology. Whether a two-terminal "object" is an electrical component or an electrical network is a matter of perspective. This article will use "component" to refer to a two-terminal "object" that participates in the series/parallel networks.
In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.
The Ćuk converter is a type of buck-boost converter with low ripple current. A Ćuk converter can be seen as a combination of boost converter and buck converter, having one switching device and a mutual capacitor, to couple the energy.
A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it.
A voltage multiplier is an electrical circuit that converts AC electrical power from a lower voltage to a higher DC voltage, typically using a network of capacitors and diodes.
Power electronics is the application of electronics to the control and conversion of electric power.
This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.
A boost converter or step-up converter is a DC-to-DC converter that increases voltage, while decreasing current, from its input (supply) to its output (load).
A buck converter or step-down converter is a DC-to-DC converter which decreases voltage, while increasing current, from its input (supply) to its output (load). It is a class of switched-mode power supply. Switching converters provide much greater power efficiency as DC-to-DC converters than linear regulators, which are simpler circuits that dissipate power as heat, but do not step up output current. The efficiency of buck converters can be very high, often over 90%, making them useful for tasks such as converting a computer's main supply voltage, which is usually 12 V, down to lower voltages needed by USB, DRAM and the CPU, which are usually 5, 3.3 or 1.8 V.
The buck–boost converter is a type of DC-to-DC converter that has an output voltage magnitude that is either greater than or less than the input voltage magnitude. It is equivalent to a flyback converter using a single inductor instead of a transformer. Two different topologies are called buck–boost converter. Both of them can produce a range of output voltages, ranging from much larger than the input voltage, down to almost zero.
Ripple in electronics is the residual periodic variation of the DC voltage within a power supply which has been derived from an alternating current (AC) source. This ripple is due to incomplete suppression of the alternating waveform after rectification. Ripple voltage originates as the output of a rectifier or from generation and commutation of DC power.
In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals.
The single-ended primary-inductor converter (SEPIC) is a type of DC/DC converter that allows the electrical potential (voltage) at its output to be greater than, less than, or equal to that at its input. The output of the SEPIC is controlled by the duty cycle of the control switch (S1).
A flyback diode is any diode connected across an inductor used to eliminate flyback, which is the sudden voltage spike seen across an inductive load when its supply current is suddenly reduced or interrupted. It is used in circuits in which inductive loads are controlled by switches, and in switching power supplies and inverters.
An HVDC converter converts electric power from high voltage alternating current (AC) to high-voltage direct current (HVDC), or vice versa. HVDC is used as an alternative to AC for transmitting electrical energy over long distances or between AC power systems of different frequencies. HVDC converters capable of converting up to two gigawatts (GW) and with voltage ratings of up to 900 kilovolts (kV) have been built, and even higher ratings are technically feasible. A complete converter station may contain several such converters in series and/or parallel to achieve total system DC voltage ratings of up to 1,100 kV.
This glossary of power electronics is a list of definitions of terms and concepts related to power electronics in general and power electronic capacitors in particular. For more definitions in electric engineering, see Glossary of electrical and electronics engineering. For terms related to engineering in general, see Glossary of engineering.