Compass equivalence theorem

Last updated

In geometry, the compass equivalence theorem is an important statement in compass and straightedge constructions. The tool advocated by Plato in these constructions is a divider or collapsing compass, that is, a compass that "collapses" whenever it is lifted from a page, so that it may not be directly used to transfer distances. The modern compass with its fixable aperture can be used to transfer distances directly and so appears to be a more powerful instrument. However, the compass equivalence theorem states that any construction via a "modern compass" may be attained with a collapsing compass. This can be shown by establishing that with a collapsing compass, given a circle in the plane, it is possible to construct another circle of equal radius, centered at any given point on the plane. This theorem is Proposition II of Book I of Euclid's Elements. The proof of this theorem has had a chequered history. [1]

Contents

Construction

Diagram for proof of Euclid I.2 Euclid2.svg
Diagram for proof of Euclid I.2

The following construction and proof of correctness are given by Euclid in his Elements. [2] Although there appear to be several cases in Euclid's treatment, depending upon choices made when interpreting ambiguous instructions, they all lead to the same conclusion, [1] and so, specific choices are given below.

Given points A, B, and C, construct a circle centered at A with radius the length of BC (that is, equivalent to the solid green circle, but centered at A).

Alternative construction without straightedge

It is possible to prove compass equivalence without the use of the straightedge. This justifies the use of "fixed compass" moves (constructing a circle of a given radius at a different location) in proofs of the Mohr–Mascheroni theorem, which states that any construction possible with straightedge and compass can be accomplished with compass alone.

Construction without using straightedge Compass-equivalence-no-straightedge.png
Construction without using straightedge

Given points A, B, and C, construct a circle centered at A with the radius BC, using only a collapsing compass and no straightedge.

There are several proofs of the correctness of this construction and it is often left as an exercise for the reader. [3] [4] Here is a modern one using transformations.


Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius.

<span class="mw-page-title-main">Constructible number</span> Number constructible via compass and straightedge

In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length can be constructed with compass and straightedge in a finite number of steps. Equivalently, is constructible if and only if there is a closed-form expression for using only integers and the operations for addition, subtraction, multiplication, division, and square roots.

<span class="mw-page-title-main">History of geometry</span> Historical development of geometry

Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers (arithmetic).

<span class="mw-page-title-main">Straightedge and compass construction</span> Method of drawing geometric objects

In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In geometry, two geometric objects are perpendicular if their intersection forms right angles at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Doubling the cube</span> Ancient geometric construction problem

Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other methods.

<span class="mw-page-title-main">Angle trisection</span> Construction of an angle equal to one third a given angle

Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a compass.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

<span class="mw-page-title-main">Thales's theorem</span> Angle formed by a point on a circle and the 2 ends of a diameter is a right angle

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

<span class="mw-page-title-main">Poncelet–Steiner theorem</span> Universality of construction using just a straightedge and a single circle with center

In the branch of mathematics known as Euclidean geometry, the Poncelet–Steiner theorem is one of several results concerning compass and straightedge constructions having additional restrictions imposed on the traditional rules. This result states that whatever can be constructed by straightedge and compass together can be constructed by straightedge alone, provided that a single circle and its centre are given. This theorem is related to the rusty compass equivalence.

In mathematics, the Mohr–Mascheroni theorem states that any geometric construction that can be performed by a compass and straightedge can be performed by a compass alone.

Napoleon's problem is a compass construction problem. In it, a circle and its center are given. The challenge is to divide the circle into four equal arcs using only a compass. Napoleon was known to be an amateur mathematician, but it is not known if he either created or solved the problem. Napoleon's friend the Italian mathematician Lorenzo Mascheroni introduced the limitation of using only a compass into geometric constructions. But actually, the challenge above is easier than the real Napoleon's problem, consisting in finding the center of a given circle with compass alone. The following sections will describe solutions to three problems and proofs that they work.

<span class="mw-page-title-main">Isodynamic point</span> 2 points about which a triangle can be inverted into an equilateral triangle

In Euclidean geometry, the isodynamic points of a triangle are points associated with the triangle, with the properties that an inversion centered at one of these points transforms the given triangle into an equilateral triangle, and that the distances from the isodynamic point to the triangle vertices are inversely proportional to the opposite side lengths of the triangle. Triangles that are similar to each other have isodynamic points in corresponding locations in the plane, so the isodynamic points are triangle centers, and unlike other triangle centers the isodynamic points are also invariant under Möbius transformations. A triangle that is itself equilateral has a unique isodynamic point, at its centroid(as well as its orthocenter, its incenter, and its circumcenter, which are concurrent); every non-equilateral triangle has two isodynamic points. Isodynamic points were first studied and named by Joseph Neuberg (1885).

<span class="mw-page-title-main">Timeline of ancient Greek mathematicians</span> Timeline and summary of ancient Greek mathematicians and their discoveries

This is a timeline of mathematicians in ancient Greece.

In Euclidean geometry, Apollonius' problem is to construct all the circles that are tangent to three given circles. Special cases of Apollonius' problem are those in which at least one of the given circles is a point or line, i.e., is a circle of zero or infinite radius. The nine types of such limiting cases of Apollonius' problem are to construct the circles tangent to:

  1. three points
  2. three lines
  3. one line and two points
  4. two lines and a point
  5. one circle and two points
  6. one circle, one line, and a point
  7. two circles and a point
  8. one circle and two lines
  9. two circles and a line

The following is a timeline of key developments of geometry:

<span class="mw-page-title-main">Pentagon</span> Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

<span class="mw-page-title-main">Quadratrix of Hippias</span> Curve where spinning and moving lines cross

The quadratrix or trisectrix of Hippias is a curve which is created by a uniform motion. It is one of the oldest examples for a kinematic curve. Its discovery is attributed to the Greek sophist Hippias of Elis, who used it around 420 BC in an attempt to solve the angle trisection problem. Later around 350 BC Dinostratus used it in an attempt to solve the problem of squaring the circle.

<span class="mw-page-title-main">Constructions in hyperbolic geometry</span>

Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed. The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. As in Euclidean geometry, where ancient Greek mathematicians used a compass and idealized ruler for constructions of lengths, angles, and other geometric figures, constructions can also be made in hyperbolic geometry.

Geometric Constructions is a mathematics textbook on constructible numbers, and more generally on using abstract algebra to model the sets of points that can be created through certain types of geometric construction, and using Galois theory to prove limits on the constructions that can be performed. It was written by George E. Martin, and published by Springer-Verlag in 1998 as volume 81 of their Undergraduate Texts in Mathematics book series.

References

  1. 1 2 Toussaint, Godfried T. (January 1993). "A New Look at Euclid's Second Proposition" (PDF). The Mathematical Intelligencer. Springer US. 15 (3): 12–24. doi:10.1007/bf03024252. eISSN   1866-7414. ISSN   0343-6993. S2CID   26811463.
  2. Heath, Thomas L. (1956) [1925]. The Thirteen Books of Euclid's Elements (2nd ed.). New York: Dover Publications. p.  244. ISBN   0-486-60088-2.
  3. 1 2 Eves, Howard (1963), A survey of Geometry (Vol. I), Allyn Bacon, p. 185
  4. 1 2 Smart, James R. (1997), Modern Geometries (5th ed.), Brooks/Cole, p. 212, ISBN   0-534-35188-3