Compound of five stellated truncated hexahedra

Last updated
Compound of five stellated truncated hexahedra
UC58-5 quasitruncated hexahedra.png
Type Uniform compound
IndexUC58
Polyhedra5 stellated truncated hexahedra
Faces40 triangles, 30 octagrams
Edges180
Vertices120
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent pyritohedral (Th)

This uniform polyhedron compound is a composition of 5 stellated truncated hexahedra, formed by star-truncating each of the cubes in the compound of 5 cubes.

Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the cyclic permutations of

(±(2−2), ±2, ±(2−2))
(±φ, ±(φ−1−φ−12), ±(2φ−1−φ2))
(±1, ±(φ−2−12), ±(φ2−φ2))
(±(1−2), ±(−φ−2+2), ±(φ22))
(±(φ−φ2), ±(−φ−1), ±(2φ−1−φ−12))

where φ = (1+5)/2 is the golden ratio.

Related Research Articles

<span class="mw-page-title-main">Icosidodecahedron</span> Archimedean solid with 32 faces

In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (icosi-) triangular faces and twelve (dodeca-) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such, it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

Golden ratio base is a non-integer positional numeral system that uses the golden ratio as its base. It is sometimes referred to as base-φ, golden mean base, phi-base, or, colloquially, phinary. Any non-negative real number can be represented as a base-φ numeral using only the digits 0 and 1, and avoiding the digit sequence "11" – this is called a standard form. A base-φ numeral that includes the digit sequence "11" can always be rewritten in standard form, using the algebraic properties of the base φ — most notably that φn + φn−1 = φn+1. For instance, 11φ = 100φ.

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated cuboctahedron</span> Archimedean solid in geometry

In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Snub dodecahedron</span> Archimedean solid with 92 faces

In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">5-cell</span> Four-dimensional analogue of the tetrahedron

In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, hypertetrahedron, 'pentachoron, pentatope, pentahedroid, tetrahedral pyramid, or 4-simplex (Coxeter's polytope), the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three dimensions and the triangle in two dimensions. The 5-cell is a 4-dimensional pyramid with a tetrahedral base and four tetrahedral sides.

<span class="mw-page-title-main">Rhombic triacontahedron</span> Catalan solid with 30 faces

The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.

<span class="mw-page-title-main">120-cell</span> Four-dimensional analog of the dodecahedron

In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid.

<span class="mw-page-title-main">Snub 24-cell</span>

In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra.

<span class="mw-page-title-main">Truncated great icosahedron</span> Polyhedron with 32 faces

In geometry, the truncated great icosahedron (or great truncated icosahedron) is a nonconvex uniform polyhedron, indexed as U55. It has 32 faces (12 pentagrams and 20 hexagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{3,52} or t0,1{3,52} as a truncated great icosahedron.

<span class="mw-page-title-main">Nonconvex great rhombicosidodecahedron</span> Polyhedron with 62 faces

In geometry, the nonconvex great rhombicosidodecahedron is a nonconvex uniform polyhedron, indexed as U67. It has 62 faces (20 triangles, 30 squares and 12 pentagrams), 120 edges, and 60 vertices. It is also called the quasirhombicosidodecahedron. It is given a Schläfli symbol rr{53,3}. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Alternation (geometry)</span> Removal of alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

<span class="mw-page-title-main">Regular dodecahedron</span> Convex polyhedron with 12 regular pentagonal faces

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron, including the other Platonic solids, has already been described by other philosophers since antiquity.

<span class="mw-page-title-main">Compound of two icosahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of 2 icosahedra. It has octahedral symmetry Oh. As a holosnub, it is represented by Schläfli symbol β{3,4} and Coxeter diagram .

<span class="mw-page-title-main">Compound of five truncated tetrahedra</span> Polyhedral compound

The compound of five truncated tetrahedra is a uniform polyhedron compound. It's composed of 5 truncated tetrahedra rotated around a common axis. It may be formed by truncating each of the tetrahedra in the compound of five tetrahedra. A far-enough truncation creates the compound of five octahedra. Its convex hull is a nonuniform snub dodecahedron.

<span class="mw-page-title-main">Compound of ten truncated tetrahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of 10 truncated tetrahedra, formed by truncating each of the tetrahedra in the compound of 10 tetrahedra. It also results from composing the two enantiomers of the compound of 5 truncated tetrahedra.

<span class="mw-page-title-main">Compound of five truncated cubes</span> Polyhedral compound

This uniform polyhedron compound is a composition of 5 truncated cubes, formed by truncating each of the cubes in the compound of 5 cubes.

References