Compound of five truncated cubes

Last updated
Compound of five truncated cubes
UC57-5 truncated cubes.png
Type Uniform compound
IndexUC57
Polyhedra5 truncated cubes
Faces40 triangles, 30 octagons
Edges180
Vertices120
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent pyritohedral (Th)

This uniform polyhedron compound is a composition of 5 truncated cubes, formed by truncating each of the cubes in the compound of 5 cubes.

Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the cyclic permutations of

(±(2+2), ±2, ±(2+2))
(±τ, ±(τ−1−12), ±(2τ−1+τ2))
(±1, ±(τ−2−τ−12), ±(τ22))
(±(1+2), ±(−τ−22), ±(τ2+2))
(±(τ+τ2), ±(−τ−1), ±(2τ−1+τ−12))

where τ = (1+5)/2 is the golden ratio (sometimes written φ).

Related Research Articles

Snub cube

In geometry, the snub cube, or snub cuboctahedron, is an Archimedean solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices.

Truncated tetrahedron

In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges. It can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length.

Rhombicosidodecahedron Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

Truncated cuboctahedron Archimedean solid in geometry

In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

24 (twenty-four) is the natural number following 23 and preceding 25.

Octagram Star polygon

In geometry, an octagram is an eight-angled star polygon.

Cubic honeycomb Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

Great icosidodecahedron

In geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 30 vertices. It is given a Schläfli symbol r{3,52}. It is the rectification of the great stellated dodecahedron and the great icosahedron. It was discovered independently by Hess (1878), Badoureau (1881) and Pitsch (1882).

Great stellated truncated dodecahedron

In geometry, the great stellated truncated dodecahedron (or quasitruncated great stellated dodecahedron or great stellatruncated dodecahedron) is a nonconvex uniform polyhedron, indexed as U66. It has 32 faces (20 triangles and 12 decagrams), 90 edges, and 60 vertices. It is given a Schläfli symbol t0,1{5/3,3}.

Truncated great icosahedron

In geometry, the truncated great icosahedron (or great truncated icosahedron) is a nonconvex uniform polyhedron, indexed as U55. It has 32 faces (12 pentagrams and 20 hexagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{3,52} or t0,1{3,52} as a truncated great icosahedron.

Truncated dodecadodecahedron

In geometry, the truncated dodecadodecahedron (or stellatruncated dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U59. It is given a Schläfli symbol t0,1,2{53,5}. It has 54 faces (30 squares, 12 decagons, and 12 decagrams), 180 edges, and 120 vertices. The central region of the polyhedron is connected to the exterior via 20 small triangular holes.

Great truncated icosidodecahedron

In geometry, the great truncated icosidodecahedron (or great quasitruncated icosidodecahedron or stellatruncated icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U68. It has 62 faces (30 squares, 20 hexagons, and 12 decagrams), 180 edges, and 120 vertices. It is given a Schläfli symbol t0,1,2{53,3}, and Coxeter-Dynkin diagram, .

Nonconvex great rhombicosidodecahedron

In geometry, the nonconvex great rhombicosidodecahedron is a nonconvex uniform polyhedron, indexed as U67. It has 62 faces (20 triangles, 30 squares and 12 pentagrams), 120 edges, and 60 vertices. It is also called the quasirhombicosidodecahedron. It is given a Schläfli symbol t0,2{53,3}. Its vertex figure is a crossed quadrilateral.

Alternation (geometry) Operation on a polyhedron or tiling that removes alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

Compound of two icosahedra Polyhedral compound

This uniform polyhedron compound is a composition of 2 icosahedra. It has octahedral symmetry Oh. As a holosnub, it is represented by Schläfli symbol β{3,4} and Coxeter diagram .

Compound of five truncated tetrahedra Polyhedral compound

The compound of five truncated tetrahedra is a uniform polyhedron compound. It's composed of 5 truncated tetrahedra rotated around a common axis. It may be formed by truncating each of the tetrahedra in the compound of five tetrahedra. A far-enough truncation creates the compound of five octahedra. Its convex hull is a nonuniform snub dodecahedron.

Compound of ten truncated tetrahedra Polyhedral compound

This uniform polyhedron compound is a composition of 10 truncated tetrahedra, formed by truncating each of the tetrahedra in the compound of 10 tetrahedra. It also results from composing the two enantiomers of the compound of 5 truncated tetrahedra.

Compound of five stellated truncated hexahedra Polyhedral compound

This uniform polyhedron compound is a composition of 5 stellated truncated hexahedra, formed by star-truncating each of the cubes in the compound of 5 cubes.

References