Compound of small stellated dodecahedron and great dodecahedron

Last updated
Great dodecahedron shown solid, surrounding stellated dodecahedron only as wireframe Compound of great dodecahedron and small stellated dodecahedron.png
Great dodecahedron shown solid, surrounding stellated dodecahedron only as wireframe

The compound of small stellated dodecahedron and great dodecahedron is a polyhedron compound where the great dodecahedron is internal to its dual, the small stellated dodecahedron.

This can be seen as one of the two three-dimensional equivalents of the compound of two pentagrams ({10/4} "decagram"); this series continues into the fourth dimension as compounds of star 4-polytopes.

Skeleton pair Gr12 and dual, Petrie, stick, size m.png
Skeleton pair Gr12 and dual, Petrie, stick, size m, 3-fold.png
Petrie hexagons of both solids

See also

Related Research Articles

Regular icosahedron One of the five Platonic solids

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

Kepler–Poinsot polyhedron

In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.

Stellation Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

Great dodecahedron

In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol {5,5/2} and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces, intersecting each other making a pentagrammic path, with five pentagons meeting at each vertex.

Small stellated dodecahedron A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

Great stellated dodecahedron

In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol {52,3}. It is one of four nonconvex regular polyhedra.

Great icosahedron

In geometry, the great icosahedron is one of four Kepler-Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

Compound of two tetrahedra Polyhedral compound

In geometry, a compound of two tetrahedra is constructed by two overlapping tetrahedra, usually implied as regular tetrahedra.

Compound of cube and octahedron Polyhedral compound

The compound of cube and octahedron is a polyhedron which can be seen as either a polyhedral stellation or a compound.

Compound of dodecahedron and icosahedron Polyhedral compound

In geometry, this polyhedron can be seen as either a polyhedral stellation or a compound.

Compound of great icosahedron and great stellated dodecahedron

There are two different compounds of great icosahedron and great stellated dodecahedron: one is a dual compound and a stellation of the great icosidodecahedron, the other is a stellation of the icosidodecahedron.

Great grand stellated 120-cell Regular Schläfli-Hess 4-polytope with 600 vertices

In geometry, the great grand stellated 120-cell or great grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,3,3}, one of 10 regular Schläfli-Hess 4-polytopes. It is unique among the 10 for having 600 vertices, and has the same vertex arrangement as the regular convex 120-cell.

Grand 600-cell

In geometry, the grand 600-cell or grand polytetrahedron is a regular star 4-polytope with Schläfli symbol {3,3,5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is the only one with 600 cells.

Icosahedral 120-cell

In geometry, the icosahedral 120-cell, polyicosahedron, faceted 600-cell or icosaplex is a regular star 4-polytope with Schläfli symbol {3,5,5/2}. It is one of 10 regular Schläfli-Hess polytopes.

Faceting

In geometry, faceting is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices.

Decagram (geometry) 10-pointed star polygon

In geometry, a decagram is a 10-point star polygon. There is one regular decagram, containing the vertices of a regular decagon, but connected by every third point. Its Schläfli symbol is {10/3}.

Medial rhombic triacontahedron

In geometry, the medial rhombic triacontahedron is a nonconvex isohedral polyhedron. It is a stellation of the rhombic triacontahedron, and can also be called small stellated triacontahedron. Its dual is the dodecadodecahedron.

Small complex icosidodecahedron

In geometry, the small complex icosidodecahedron is a degenerate uniform star polyhedron. Its edges are doubled, making it degenerate. The star has 32 faces, 60 (doubled) edges and 12 vertices and 4 sharing faces. The faces in it are considered as two overlapping edges as topological polyhedron.

References