Compound of twelve pentagrammic prisms

Last updated
Compound of twelve pentagrammic prisms
UC37-12 pentagrammic prisms.png
Type Uniform compound
IndexUC37
Polyhedra12 pentagrammic prisms
Faces24 pentagrams, 60 squares
Edges180
Vertices60
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent5-fold dihedral (D5)

This uniform polyhedron compound is a symmetric arrangement of 12 pentagrammic prisms, aligned in pairs with the axes of fivefold rotational symmetry of a dodecahedron.

It results from composing the two enantiomorphs of the compound of six pentagrammic prisms. In doing so, the vertices of the two enantiomorphs coincide, with the result that the full compound has two pentagrammic prisms incident on each of its vertices.

This compound shares its vertex arrangement with four uniform polyhedra as follows:

Small rhombicosidodecahedron.png
Rhombicosidodecahedron
Small dodecicosidodecahedron.png
Small dodecicosidodecahedron
Small rhombidodecahedron.png
Small rhombidodecahedron
Small stellated truncated dodecahedron.png
Small stellated truncated dodecahedron
UC36-6 pentagrammic prisms.png
Compound of six pentagrammic prisms
UC37-12 pentagrammic prisms.png
Compound of twelve pentagrammic prisms

Related Research Articles

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Small stellated dodecahedron</span> A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

<span class="mw-page-title-main">Small rhombidodecahedron</span> Polyhedron with 42 faces

In geometry, the small rhombidodecahedron is a nonconvex uniform polyhedron, indexed as U39. It has 42 faces (30 squares and 12 decagons), 120 edges, and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Small stellated truncated dodecahedron</span> Polyhedron with 24 faces

In geometry, the small stellated truncated dodecahedron (or quasitruncated small stellated dodecahedron or small stellatruncated dodecahedron) is a nonconvex uniform polyhedron, indexed as U58. It has 24 faces (12 pentagons and 12 decagrams), 90 edges, and 60 vertices. It is given a Schläfli symbol t{53,5}, and Coxeter diagram .

<span class="mw-page-title-main">Great dodecicosidodecahedron</span> Polyhedron with 44 faces

In geometry, the great dodecicosidodecahedron (or great dodekicosidodecahedron) is a nonconvex uniform polyhedron, indexed as U61. It has 44 faces (20 triangles, 12 pentagrams and 12 decagrams), 120 edges and 60 vertices.

<span class="mw-page-title-main">Rhombidodecadodecahedron</span> Polyhedron with 54 faces

In geometry, the rhombidodecadodecahedron is a nonconvex uniform polyhedron, indexed as U38. It has 54 faces (30 squares, 12 pentagons and 12 pentagrams), 120 edges and 60 vertices. It is given a Schläfli symbol t0,2{52,5}, and by the Wythoff construction this polyhedron can also be named a cantellated great dodecahedron.

<span class="mw-page-title-main">Ditrigonal dodecadodecahedron</span> Polyhedron with 24 faces

In geometry, the ditrigonal dodecadodecahedron (or ditrigonary dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U41. It has 24 faces (12 pentagons and 12 pentagrams), 60 edges, and 20 vertices. It has extended Schläfli symbol b{5,52}, as a blended great dodecahedron, and Coxeter diagram . It has 4 Schwarz triangle equivalent constructions, for example Wythoff symbol 3 | 53 5, and Coxeter diagram .

<span class="mw-page-title-main">Icosidodecadodecahedron</span> Polyhedron with 44 faces

In geometry, the icosidodecadodecahedron (or icosified dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U44. It has 44 faces (12 pentagons, 12 pentagrams and 20 hexagons), 120 edges and 60 vertices. Its vertex figure is a crossed quadrilateral.

<span class="mw-page-title-main">Nonconvex great rhombicosidodecahedron</span> Polyhedron with 62 faces

In geometry, the nonconvex great rhombicosidodecahedron is a nonconvex uniform polyhedron, indexed as U67. It has 62 faces (20 triangles, 30 squares and 12 pentagrams), 120 edges, and 60 vertices. It is also called the quasirhombicosidodecahedron. It is given a Schläfli symbol rr{53,3}. Its vertex figure is a crossed quadrilateral.

In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.

In geometry, a uniform polyhedron compound is a polyhedral compound whose constituents are identical uniform polyhedra, in an arrangement that is also uniform, i.e. the symmetry group of the compound acts transitively on the compound's vertices.

<span class="mw-page-title-main">Prismatic uniform polyhedron</span> Uniform polyhedron with dihedral symmetry

In geometry, a prismatic uniform polyhedron is a uniform polyhedron with dihedral symmetry. They exist in two infinite families, the uniform prisms and the uniform antiprisms. All have their vertices in parallel planes and are therefore prismatoids.

<span class="mw-page-title-main">Compound of twenty octahedra</span> Polyhedral compound

The compound of twenty octahedra is a uniform polyhedron compound. It's composed of a symmetric arrangement of 20 octahedra. It is a special case of the compound of 20 octahedra with rotational freedom, in which pairs of octahedral vertices coincide.

<span class="mw-page-title-main">Compound of twenty triangular prisms</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 20 triangular prisms, aligned in pairs with the axes of three-fold rotational symmetry of an icosahedron.

<span class="mw-page-title-main">Compound of eight triangular prisms</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 8 triangular prisms, aligned in pairs with the axes of three-fold rotational symmetry of an octahedron. It results from composing the two enantiomorphs of the compound of 4 triangular prisms.

<span class="mw-page-title-main">Compound of six pentagrammic prisms</span> Polyhedral compound

This uniform polyhedron compound is a chiral symmetric arrangement of 6 pentagrammic prisms, aligned with the axes of fivefold rotational symmetry of a dodecahedron.

<span class="mw-page-title-main">Compound of twelve pentagonal prisms</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 12 pentagonal prisms, aligned in pairs with the axes of fivefold rotational symmetry of a dodecahedron.

<span class="mw-page-title-main">Compound of twelve pentagonal antiprisms with rotational freedom</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 12 pentagonal antiprisms. It can be constructed by inscribing one pair of pentagonal antiprisms within an icosahedron, in each of the six possible ways, and then rotating each by an equal and opposite angle θ

<span class="mw-page-title-main">Density (polytope)</span> Number of windings of a polytope around its center of symmetry

In geometry, the density of a star polyhedron is a generalization of the concept of winding number from two dimensions to higher dimensions, representing the number of windings of the polyhedron around the center of symmetry of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the facets of the polytope and not through any lower dimensional features, and counting how many facets it passes through. For polyhedra for which this count does not depend on the choice of the ray, and for which the central point is not itself on any facet, the density is given by this count of crossed facets.

References