This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Compounding of steam turbines is a method of extracting steam energy in multiple stages rather than in a single stage in a steam turbine. A compounded steam turbine has multiple stages with more than one set of nozzles and rotors. These are arranged in series, either keyed to the common shaft or fixed to the casing. The result of this arrangement allows either the steam pressure or the jet velocity to be absorbed by the turbine in a number of stages. [1] [2]
Compounded steam turbines are used to reduce rotor speeds to achieve optimal operating revolutions per minute. The steam produced in the boiler has sufficiently high enthalpy when superheated. In all turbines the blade velocity is directly proportional to the velocity of the steam passing over the blade. Now, if the entire energy of the steam is extracted in one stage, i.e. if the steam is expanded from the boiler pressure to the condenser pressure in a single stage, then its velocity will be very high. Hence the velocity of the rotor (to which the blades are keyed) can reach to about 30,000 rpm, which is too high for practical uses due to very high vibration. Moreover, at such high speeds the centrifugal forces are immense, and can damage the structure. Hence, compounding is needed. The high velocity steam just strikes on a single ring of rotor that causes wastage of steam ranging 10% to 12%. To overcome the wastage of steam, compounding of steam turbines are used.
In an Impulse steam turbine compounding can be achieved in the following three ways:
In a reaction turbine compounding can be achieved only by pressure compounding.
The velocity compounded Impulse turbine was first proposed by C.G. Curtis to solve the problem of single stage Impulse turbine for use of high pressure and temperature steam.
The rings of moving blades are separated by rings of fixed blades. The moving blades are keyed to the turbine shaft and the fixed blades are fixed to the casing. The high pressure steam coming from the boiler is expanded in the nozzle first. The Nozzle converts the pressure energy of the steam into kinetic energy. The total enthalpy drop and hence the pressure drop occurs in the nozzle. Hence, the pressure thereafter remains constant.
This high velocity steam is directed on to the first set (ring) of moving blades. As the steam flows over the blades, due to the shape of the blades, it imparts some of its momentum to the blades and loses some velocity. Only a part of the high kinetic energy is absorbed by these blades. The remainder is exhausted on to the next ring of fixed blade. The function of the fixed blades is to redirect the steam leaving from the first ring of moving blades to the second ring of moving blades. There is no change in the velocity of the steam as it passes through the fixed blades. The steam then enters the next ring of moving blades; this process is repeated until practically all the energy of the steam has been absorbed.
A schematic diagram of the Curtis stage impulse turbine, with two rings of moving blades one ring of fixed blades is shown in figure 1. The figure also shows the changes in the pressure and the absolute steam velocity as it passes through the stages.
where,
= pressure of steam at inlet
= velocity of steam at inlet
= pressure of steam at outlet
= velocity of steam at outlet
In the above figure there are two rings of moving blades separated by a single of ring of fixed blades. As discussed earlier the entire pressure drop occurs in the nozzle, and there are no subsequent pressure losses in any of the following stages. Velocity drop occurs in the moving blades and not in fixed blades.
As shown in the above diagram there are two rings of moving blades separated by a ring of fixed blades. The velocity diagram in figure 2, shows the various components of steam velocity and the blade velocity of the moving blades.
where,
= absolute velocity of steam
= relative velocity of steam
= Blade velocity
= Nozzle angle
= Blade entrance angle
= Blade exit angle
= fluid exit angle
From the above figure it can be seen that the steam, after exiting from the moving blades, enters into the fixed blades. The fixed blades redirect the steam into the next set of moving blades. Hence, steam loses its velocity in multiple stages rather than in a single stage.
It is the velocity of the blades at which maximum power output can be achieved. Hence, the optimum blade velocity for this case is,
where n is the number of stages.
This value of optimum velocity is 1/n times that of the single stage turbine. This means that maximum power can be produced at much lower blade velocities.
However, the work produced in each stage is not the same. The ratio of work produced in a 2-stage turbine is 3:1 as one move from higher to lower pressure. This ratio is 5:3:1 in three stage turbine and changes to 7:5:3:1 in a four-stage turbine.
The pressure compounded Impulse turbine is also called a Rateau turbine, after its inventor. This is used to solve the problem of high blade velocity in the single-stage impulse turbine.
It consists of alternate rings of nozzles and turbine blades. The nozzles are fitted to the casing and the blades are keyed to the turbine shaft.
In this type of compounding, the steam is expanded in a number of stages, instead of just one (nozzle) in the velocity compounding. It is done by the fixed blades which act as nozzles. The steam expands equally in all rows of fixed blade. The steam coming from the boiler is fed to the first set of fixed blades i.e. the nozzle ring. The steam is partially expanded in the nozzle ring. Hence, there is a partial decrease in pressure of the incoming steam. This leads to an increase in the velocity of the steam. Therefore, the pressure decreases and velocity increases partially in the nozzle.
This is then passed over the set of moving blades. As the steam flows over the moving blades, nearly all its velocity is absorbed. However, the pressure remains constant during this process. After this it is passed into the nozzle ring and is again partially expanded. Then it is fed into the next set of moving blades, and this process is repeated until the condenser pressure is reached.
This process has been illustrated in figure 3 where the symbols have the same meaning as given above.
It is a three-stage pressure compounded impulse turbine. Each stage consists of one ring of fixed blades, which act as nozzles, and one ring of moving blades. As shown in the figure, pressure drop takes place in the nozzles and is distributed in many stages.
An important point to note here is that the inlet steam velocities to each stage of moving blades are essentially equal. It is because the velocity corresponds to the lowering of the pressure. Since, in a pressure compounded steam turbine, only a part of the steam is expanded in each nozzle. The steam velocity is lower than in the previous case. It can be explained mathematically from the following formula i.e.
where,
= absolute exit velocity of fluid
= enthalpy of fluid at exit
= absolute entry velocity of fluid
= enthalpy of fluid at entry
One can see from the formula that only a fraction of the enthalpy is converted into velocity in the fixed blades. Hence, velocity is less as compared to the previous case.
The velocity diagram shown in figure 4 gives detail about the various components of steam velocity and Blade velocity.
where, symbols have the same meaning as given above.
An important point to note from the above velocity diagram is that the fluid exit angle (δ) is 90⁰. This indicates that the whirl velocity of fluid at exit of all stages is zero, which is in compliance with the optimum velocity concept (as discussed earlier).
The ratio of work produced in different stages is similar to the above type.
It is a combination of the above two types of compounding. The total pressure drop of the steam is divided into a number of stages. Each stage consists of rings of fixed and moving blades. Each set of rings of moving blades is separated by a single ring of fixed blades. In each stage there is one ring of fixed blades and 3–4 rings of moving blades. Each stage acts as a velocity compounded impulse turbine.
The fixed blades act as nozzles. The steam coming from the boiler is passed to the first ring of fixed blades, where it gets partially expanded. The pressure partially decreases and the velocity rises correspondingly. The velocity is absorbed by the following rings of moving blades until it reaches the next ring of fixed blades and the whole process is repeated once again.
This process is shown diagrammatically in figure 5.
where, symbols have their usual meaning.
As explained earlier a reaction turbine is one in which there is pressure and velocity loss in the moving blades. The moving blades have a converging steam nozzle. Hence when the steam passes over the fixed blades, it expands with decrease in steam pressure and increase in kinetic energy.
This type of turbine has a number of rings of moving blades attached to the rotor and an equal number of fixed blades attached to the casing. In this type of turbine the pressure drops take place in a number of stages.
The steam passes over a series of alternate fixed and moving blades. The fixed blades act as nozzles i.e. they change the direction of the steam and also expand it. Then steam is passed on the moving blades, which further expand the steam and also absorb its velocity.
This is explained in figure 6.
where symbols have the same meaning as above.
The velocity diagram given in figure 7 gives a detail about the various components of steam velocity and blade velocity (symbols have the same meaning as above).
The Pelton wheel or Pelton Turbine is an impulse-type water turbine invented by American inventor Lester Allan Pelton in the 1870s. The Pelton wheel extracts energy from the impulse of moving water, as opposed to water's dead weight like the traditional overshot water wheel. Many earlier variations of impulse turbines existed, but they were less efficient than Pelton's design. Water leaving those wheels typically still had high speed, carrying away much of the dynamic energy brought to the wheels. Pelton's paddle geometry was designed so that when the rim ran at half the speed of the water jet, the water left the wheel with very little speed; thus his design extracted almost all of the water's impulse energy—which made for a very efficient turbine.
A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbine involves advanced metalwork to form high-grade steel alloys into precision parts using technologies that first became available in the 20th century; continued advances in durability and efficiency of steam turbines remains central to the energy economics of the 21st century.
A turbine is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical power when combined with a generator. A turbine is a turbomachine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor. Early turbine examples are windmills and waterwheels.
The Tesla turbine is a bladeless centripetal flow turbine invented by Nikola Tesla in 1913. Nozzles apply a moving fluid to the edges of a set of discs. The engine uses smooth discs rotating in a chamber to generate rotational movement due to the exchange of momentum between the fluid and the discs. The discs are arranged in an orientation similar to a stack of CDs on a pole.
Centrifugal compressors, sometimes called impeller compressors or radial compressors, are a sub-class of dynamic axisymmetric work-absorbing turbomachinery.
A de Laval nozzle is a tube which is pinched in the middle, making a carefully balanced, asymmetric hourglass shape. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy. De Laval nozzles are widely used in some types of steam turbines and rocket engine nozzles. It also sees use in supersonic jet engines.
The Francis turbine is a type of water turbine. It is an inward-flow reaction turbine that combines radial and axial flow concepts. Francis turbines are the most common water turbine in use today, and can achieve over 95% efficiency.
An injector is a system of ducting and nozzles used to direct the flow of a high-pressure fluid in such a way that a lower pressure fluid is entrained in the jet and carried through a duct to a region of higher pressure. It is a fluid-dynamic pump with no moving parts except a valve to control inlet flow.
An axial compressor is a gas compressor that can continuously pressurize gases. It is a rotating, airfoil-based compressor in which the gas or working fluid principally flows parallel to the axis of rotation, or axially. This differs from other rotating compressors such as centrifugal compressor, axi-centrifugal compressors and mixed-flow compressors where the fluid flow will include a "radial component" through the compressor.
Turbomachinery, in mechanical engineering, describes machines that transfer energy between a rotor and a fluid, including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a compressor transfers energy from a rotor to a fluid. It is an important application of fluid mechanics.
A compressor map is a chart which shows the performance of a turbomachinery compressor. This type of compressor is used in gas turbine engines, for supercharging reciprocating engines and for industrial processes, where it is known as a dynamic compressor. A map is created from compressor rig test results or predicted by a special computer program. Alternatively the map of a similar compressor can be suitably scaled. This article is an overview of compressor maps and their different applications and also has detailed explanations of maps for a fan and intermediate and high-pressure compressors from a three-shaft aero-engine as specific examples.
A jet engine performs by converting fuel into thrust. How well it performs is an indication of what proportion of its fuel goes to waste. It transfers heat from burning fuel to air passing through the engine. In doing so it produces thrust work when propelling a vehicle but a lot of the fuel is wasted and only appears as heat. Propulsion engineers aim to minimize the degradation of fuel energy into unusable thermal energy. Increased emphasis on performance improvements for commercial airliners came in the 1970s from the rising cost of fuel.
A rocket engine nozzle is a propelling nozzle used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
A radial turbine is a turbine in which the flow of the working fluid is radial to the shaft. The difference between axial and radial turbines consists in the way the fluid flows through the components. Whereas for an axial turbine the rotor is 'impacted' by the fluid flow, for a radial turbine, the flow is smoothly orientated perpendicular to the rotation axis, and it drives the turbine in the same way water drives a watermill. The result is less mechanical stress which enables a radial turbine to be simpler, more robust, and more efficient when compared to axial turbines. When it comes to high power ranges the radial turbine is no longer competitive and the efficiency becomes similar to that of the axial turbines.
Pressure compounding is the method in which pressure in a steam turbine is made to drop in a number of stages rather than in a single nozzle. This method of compounding is used in Rateau and Zoelly turbines.
In turbomachinery, degree of reaction or reaction ratio (R) is defined as the ratio of the static pressure rise in the rotating blades of a compressor (or drop in turbine blades) to the static pressure rise in the compressor stage (or drop in a turbine stage). Alternatively it is the ratio of static enthalpy change in the rotor to the static enthalpy change in the stage.
Any turbomachine extracts energy from high-pressure steam and converts it into shaft work. The total energy content available in steam supplied to the steam turbine is not completely recovered in the form of mechanical energy. There are certain losses in energy of steam which occur inside a turbine...
Blade element momentum theory is a theory that combines both blade element theory and momentum theory. It is used to calculate the local forces on a propeller or wind-turbine blade. Blade element theory is combined with momentum theory to alleviate some of the difficulties in calculating the induced velocities at the rotor.
Francis turbine converts energy at high pressure heads which are not easily available and hence a turbine was required to convert the energy at low pressure heads, given that the quantity of water was large enough. It was easy to convert high pressure heads to power easily but difficult to do so for low pressure heads. Therefore, an evolution took place that converted the Francis turbine to Kaplan turbine, which generated power at even low pressure heads efficiently.
An axial turbine is a turbine in which the flow of the working fluid is parallel to the shaft, as opposed to radial turbines, where the fluid runs around a shaft, as in a watermill. An axial turbine has a similar construction as an axial compressor, but it operates in the reverse, converting flow of the fluid into rotating mechanical energy.