Computational journalism

Last updated

Computational journalism can be defined as the application of computation to the activities of journalism such as information gathering, organization, sensemaking, communication and dissemination of news information, while upholding values of journalism such as accuracy and verifiability. [1] The field draws on technical aspects of computer science including artificial intelligence, content analysis (NLP, NLG, vision, audition), visualization, personalization and recommender systems as well as aspects of social computing and information science.

Contents

History of the field

The field emerged at Georgia Institute of Technology in 2006 where a course in the subject was taught by professor Irfan Essa. [2] In February 2008 Georgia Tech hosted a Symposium on Computation and Journalism which convened several hundred computing researchers and journalists in Atlanta, GA. In July 2009, The Center for Advanced Study in the Behavioral Sciences (CASBS) at Stanford University hosted a workshop to push the field forward. [3]

Since 2012, Columbia Journalism School has offered a course called Frontiers of Computational Journalism for the students enrolled in their dual degree in CS and journalism. The course covers many computer science topics from the perspective of journalism, including document vector space representation, algorithmic and social story selection (recommendation algorithms), language topic models, information visualization, knowledge representation and reasoning, social network analysis, quantitative and qualitative inference, and information security.

Syracuse University launched a masters in computational journalism in 2015.

Stanford University launched a Computational Journalism Lab in 2015, as well as a course titled, Computational Journalism.

In 2017, the Associated Press published a guide [4] for newsrooms to deploy artificial intelligence and computational methods. [5]

Applications

Over the years, computational journalism applications have involved different areas of the newsmaking process: from data gathering to the analysis of big data and their representation. In the beginning, therefore, it was more an aspect area linked to the discipline of data science, where the research and exploration of a fact may be automated.

But it is just with the rise of artificial intelligence that it has become possible to explore new types of applications, even up to the automation of news writing (text generation).

In this last field, there are interesting examples of application.

Resources

Related Research Articles

<span class="mw-page-title-main">Computer science</span> Study of computation

Computer science is the study of computation, information, and automation. Computer science spans theoretical disciplines to applied disciplines. Though more often considered an academic discipline, computer science is closely related to computer programming.

Computer science is the study of the theoretical foundations of information and computation and their implementation and application in computer systems. One well known subject classification system for computer science is the ACM Computing Classification System devised by the Association for Computing Machinery.

In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.

A computer scientist is a scholar who specializes in the academic study of computer science.

Computational semiotics is an interdisciplinary field that applies, conducts, and draws on research in logic, mathematics, the theory and practice of computation, formal and natural language studies, the cognitive sciences generally, and semiotics proper. The term encompasses both the application of semiotics to computer hardware and software design and, conversely, the use of computation for performing semiotic analysis. The former focuses on what semiotics can bring to computation; the latter on what computation can bring to semiotics.

<span class="mw-page-title-main">Logic in computer science</span> Academic discipline

Logic in computer science covers the overlap between the field of logic and that of computer science. The topic can essentially be divided into three main areas:

The expression computational intelligence (CI) usually refers to the ability of a computer to learn a specific task from data or experimental observation. Even though it is commonly considered a synonym of soft computing, there is still no commonly accepted definition of computational intelligence.

In artificial intelligence, artificial immune systems (AIS) are a class of computationally intelligent, rule-based machine learning systems inspired by the principles and processes of the vertebrate immune system. The algorithms are typically modeled after the immune system's characteristics of learning and memory for use in problem-solving.

Computational visualistics is an interdisciplinary field of study which looks at how computers can be used to generate and analyse images.

Computational thinking (CT) refers to the thought processes involved in formulating problems so their solutions can be represented as computational steps and algorithms. In education, CT is a set of problem-solving methods that involve expressing problems and their solutions in ways that a computer could also execute. It involves automation of processes, but also using computing to explore, analyze, and understand processes.

Informatics is the study of computational systems. According to the ACM Europe Council and Informatics Europe, informatics is synonymous with computer science and computing as a profession, in which the central notion is transformation of information. In some cases, the term "informatics" may also be used with different meanings, e.g. in the context of social computing, or in context of library science.

Computational Law is the branch of legal informatics concerned with the automation of legal reasoning. What distinguishes Computational Law systems from other instances of legal technology is their autonomy, i.e. the ability to answer legal questions without additional input from human legal experts.

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

Automated journalism, also known as algorithmic journalism or robot journalism, is a term that attempts to describe modern technological processes that have infiltrated the journalistic profession, such as news articles generated by computer programs. There are four main fields of application for automated journalism, namely automated content production, Data Mining, news dissemination and content optimization. Through artificial intelligence (AI) software, stories are produced automatically by computers rather than human reporters. These programs interpret, organize, and present data in human-readable ways. Typically, the process involves an algorithm that scans large amounts of provided data, selects from an assortment of pre-programmed article structures, orders key points, and inserts details such as names, places, amounts, rankings, statistics, and other figures. The output can also be customized to fit a certain voice, tone, or style.

Soft computing is an umbrella term used to describe types of algorithms that produce approximate solutions to unsolvable high-level problems in computer science. Typically, traditional hard-computing algorithms heavily rely on concrete data and mathematical models to produce solutions to problems. Soft computing was coined in the late 20th century. During this period, revolutionary research in three fields greatly impacted soft computing. Fuzzy logic is a computational paradigm that entertains the uncertainties in data by using levels of truth rather than rigid 0s and 1s in binary. Next, neural networks which are computational models influenced by human brain functions. Finally, evolutionary computation is a term to describe groups of algorithm that mimic natural processes such as evolution and natural selection.

Automated decision-making (ADM) involves the use of data, machines and algorithms to make decisions in a range of contexts, including public administration, business, health, education, law, employment, transport, media and entertainment, with varying degrees of human oversight or intervention. ADM involves large-scale data from a range of sources, such as databases, text, social media, sensors, images or speech, that is processed using various technologies including computer software, algorithms, machine learning, natural language processing, artificial intelligence, augmented intelligence and robotics. The increasing use of automated decision-making systems (ADMS) across a range of contexts presents many benefits and challenges to human society requiring consideration of the technical, legal, ethical, societal, educational, economic and health consequences.

References

  1. Nick Diakopoulos A functional roadmap for innovation in computational journalism Archived 2016-04-14 at the Wayback Machine
  2. "Overview | Computational Journalism 4803 CJ / 8803 CJ". Archived from the original on 2009-12-25. Retrieved 2009-12-23. 2008 Course Site
  3. James T. Hamilton Accountability Through Algorithm: Developing the Field of Computational Journalism Archived 2012-03-07 at the Wayback Machine
  4. "AP Insights | Report: How artificial intelligence will impact journalism". insights.ap.org. Retrieved 2018-03-22.
  5. "Want to bring automation to your newsroom? A new AP report details best practices". Nieman Lab. Retrieved 2018-03-22.
  6. "The Washington Post's robot reporter has published 850 articles in the past year". Digiday. 2017-09-14. Retrieved 2020-11-25.