Computer-aided simple triage

Last updated
Computer-aided simple triage
Purposecomputer systems that assist in initial interpretation of image

Computer-aided simple triage (CAST) are computerized methods or systems that assist physicians in initial interpretation and classification of medical images. CAST is a sub-class of computer-aided diagnosis (CAD). CAST software systems perform a fully automatic initial triage (classification) of diagnostic medical imaging studies. CAST is primarily intended for emergency diagnostic imaging, where a prompt diagnosis of critical, life-threatening condition is required. [1]

Contents

Overview

Computer-aided simple triage (CAST) is a combination of computer-aided diagnosis (CAD) and simple triage and rapid treatment (START). CAST performs a fully automatic initial interpretation of a study – a "wet read". Studies are automatically classified into some meaningful categories, e.g. positive/negative, critical/minor/normal, difficult/simple/non-diagnostic, etc. [1]

CAST is primarily intended for emergency diagnostic imaging. Unlike traditional CAD, mainly used to detect malignant lesions, CAST deals with acute, life-threatening conditions, when a prompt diagnosis is time critical. While the primary goal of the traditional CAD is improving the diagnostic accuracy of a human reader, the CAST addresses two other problems:

Use case scenario

As with the traditional CAD, CAST does not substitute the physician. It only alerts about the possibility of acute, critical condition, or suggests that the study is free of severe disease. In both cases, the diagnosis should be verified by a trained physician. The clinical benefit is achieved:

Traditional CAD system usually plays the role of a "second reader" and is used after or during the interpretation performed by physician. CAST, on the other hand, analyzes the study before the physician, in a background, fully automatic mode. By the time physician comes to read the study, the initial triage or "wet read" prepared by CAST is already available. CAST system can send a message to a physician to report an urgent case requiring immediate attention.

Sensitivity and specificity

Like any CAD system, CAST, in general, cannot guarantee 100% diagnostic accuracy. Since CAST operates in a fully automated mode, the system is expected to exhibit very high sensitivity – usually above 90%. Moreover, the need to provide a diagnosis at "per study" level dictates stringent requirements for CAST specificity as well. The average of one or more false alarms per study, tolerable for a traditional CAD, is not acceptable for CAST, as almost every study would be reported as positive. Therefore, for most clinical applications, CAST specificity should be higher than 60-70% to make it useful.

Reliability and quality control

Since CAST operates in a fully automatic mode, it should be able to deal with any study, regardless of image quality, patient anatomy, etc. Therefore, CAST systems should implement a quality control mechanism to ensure the high confidence level of the diagnosis. If the system decides (based on the evaluated image quality, detected artifacts, anatomical anomalies, etc.) that no reliable diagnosis can be automatically achieved, it reports a failure.

Clinical applications

CAST approach is applicable for the automatic detection of acute, life-threatening conditions from diagnostic medical images, such as:

CAST system can analyze images acquired with various modalities, including x-ray, CT, MRI, ultrasound and others.

Examples

CAST for coronary artery disease

CAST system is available for the detection of significant (>50%) coronary stenosis in coronary CT angiography (cCTA) studies. The system exhibits "per study" specificity of 60–70%, while keeping the sensitivity above 90%. [3] [4] [5] [6] [7] It can be used for chest pain patient triage in emergency room.

CAST for Intracranial Hemorrhages

A deep learning system is available for automatic detection of Intracranial Hemorrhages in acute care settings. [8]

See also

Related Research Articles

<span class="mw-page-title-main">CT scan</span> Medical imaging procedure using X-rays to produce cross-sectional images

A computed tomography scan is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists.

<span class="mw-page-title-main">Pulmonary embolism</span> Blockage of an artery in the lungs

Pulmonary embolism (PE) is a blockage of an artery in the lungs by a substance that has moved from elsewhere in the body through the bloodstream (embolism). Symptoms of a PE may include shortness of breath, chest pain particularly upon breathing in, and coughing up blood. Symptoms of a blood clot in the leg may also be present, such as a red, warm, swollen, and painful leg. Signs of a PE include low blood oxygen levels, rapid breathing, rapid heart rate, and sometimes a mild fever. Severe cases can lead to passing out, abnormally low blood pressure, obstructive shock, and sudden death.

<span class="mw-page-title-main">Angiography</span> Medical imaging technique

Angiography or arteriography is a medical imaging technique used to visualize the inside, or lumen, of blood vessels and organs of the body, with particular interest in the arteries, veins, and the heart chambers. Modern angiography is performed by injecting a radio-opaque contrast agent into the blood vessel and imaging using X-ray based techniques such as fluoroscopy.

<span class="mw-page-title-main">Coronary catheterization</span> Radiography of heart and blood vessels

A coronary catheterization is a minimally invasive procedure to access the coronary circulation and blood filled chambers of the heart using a catheter. It is performed for both diagnostic and interventional (treatment) purposes.

Intravascular ultrasound (IVUS) or intravascular echocardiography is a medical imaging methodology using a specially designed catheter with a miniaturized ultrasound probe attached to the distal end of the catheter. The proximal end of the catheter is attached to computerized ultrasound equipment. It allows the application of ultrasound technology, such as piezoelectric transducer or CMUT, to see from inside blood vessels out through the surrounding blood column, visualizing the endothelium of blood vessels.

<span class="mw-page-title-main">Digital subtraction angiography</span> Method for delineating blood vessels using contrast medium

Digital subtraction angiography (DSA) is a fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. Images are produced using contrast medium by subtracting a "pre-contrast image" or mask from subsequent images, once the contrast medium has been introduced into a structure. Hence the term "digital subtraction angiography. Subtraction angiography was first described in 1935 and in English sources in 1962 as a manual technique. Digital technology made DSA practical starting in the 1970s.

<span class="mw-page-title-main">Computer-aided diagnosis</span> Type of diagnosis assisted by computers

Computer-aided detection (CADe), also called computer-aided diagnosis (CADx), are systems that assist doctors in the interpretation of medical images. Imaging techniques in X-ray, MRI, Endoscopy, and ultrasound diagnostics yield a great deal of information that the radiologist or other medical professional has to analyze and evaluate comprehensively in a short time. CAD systems process digital images or videos for typical appearances and to highlight conspicuous sections, such as possible diseases, in order to offer input to support a decision taken by the professional.

<span class="mw-page-title-main">Myocardial perfusion imaging</span> Nuclear medicine imaging method

Myocardial perfusion imaging or scanning is a nuclear medicine procedure that illustrates the function of the heart muscle (myocardium).

<span class="mw-page-title-main">Computed tomography angiography</span> Medical investigation technique

Computed tomography angiography is a computed tomography technique used for angiography—the visualization of arteries and veins—throughout the human body. Using contrast injected into the blood vessels, images are created to look for blockages, aneurysms, dissections, and stenosis. CTA can be used to visualize the vessels of the heart, the aorta and other large blood vessels, the lungs, the kidneys, the head and neck, and the arms and legs. CTA can also be used to localise arterial or venous bleed of the gastrointestinal system.

<span class="mw-page-title-main">CT pulmonary angiogram</span>

A CT pulmonary angiogram (CTPA) is a medical diagnostic test that employs computed tomography (CT) angiography to obtain an image of the pulmonary arteries. Its main use is to diagnose pulmonary embolism (PE). It is a preferred choice of imaging in the diagnosis of PE due to its minimally invasive nature for the patient, whose only requirement for the scan is an intravenous line.

A coronary CT calcium scan is a computed tomography (CT) scan of the heart for the assessment of severity of coronary artery disease. Specifically, it looks for calcium deposits in atherosclerotic plaques in the coronary arteries that can narrow arteries and increase the risk of heart attack. These plaques are the cause of most heart attacks, and become calcified as they develop.

<span class="mw-page-title-main">Median arcuate ligament syndrome</span> Medical condition

In medicine, the median arcuate ligament syndrome is a rare condition characterized by abdominal pain attributed to compression of the celiac artery and the celiac ganglia by the median arcuate ligament. The abdominal pain may be related to meals, may be accompanied by weight loss, and may be associated with an abdominal bruit heard by a clinician.

<span class="mw-page-title-main">Spontaneous coronary artery dissection</span> Uncommon cause of heart attacks mostly affecting younger, healthy women

Spontaneous coronary artery dissection (SCAD) is an uncommon but potentially lethal condition in which one of the coronary arteries that supply the heart, spontaneously develops a blood collection, or hematoma, within the artery wall due to a tear in the wall. SCAD is one of the arterial dissections that can occur.

<span class="mw-page-title-main">Carotid ultrasonography</span> Ultrasound-based diagnostic imaging technique

Carotid ultrasonography is an ultrasound-based diagnostic imaging technique to evaluate structural details of the carotid arteries. Carotid ultrasound is used to diagnose carotid artery stenosis (CAS) and can assess atherosclerotic plaque morphology and characteristics. Carotid duplex and contrast-enhanced ultrasound are two of the most common imaging techniques used to evaluate carotid artery disease.

<span class="mw-page-title-main">Cardiac magnetic resonance imaging perfusion</span>

Cardiac magnetic resonance imaging perfusion, also known as stress CMR perfusion, is a clinical magnetic resonance imaging test performed on patients with known or suspected coronary artery disease to determine if there are perfusion defects in the myocardium of the left ventricle that are caused by narrowing of one or more of the coronary arteries.

<span class="mw-page-title-main">Contrast CT</span> Medical imaging technique

Contrast CT, or contrast enhanced computed tomography (CECT), is X-ray computed tomography (CT) using radiocontrast. Radiocontrasts for X-ray CT are generally iodine-based types. This is useful to highlight structures such as blood vessels that otherwise would be difficult to delineate from their surroundings. Using contrast material can also help to obtain functional information about tissues. Often, images are taken both with and without radiocontrast. CT images are called precontrast or native-phase images before any radiocontrast has been administered, and postcontrast after radiocontrast administration.

<span class="mw-page-title-main">Coronary CT angiography</span> Use of computed tomography angiography to assess the coronary arteries of the heart

Coronary CT angiography is the use of computed tomography (CT) angiography to assess the coronary arteries of the heart. The patient receives an intravenous injection of radiocontrast and then the heart is scanned using a high speed CT scanner, allowing physicians to assess the extent of occlusion in the coronary arteries, usually in order to diagnose coronary artery disease.

<span class="mw-page-title-main">Cardiac imaging</span>

Cardiac imaging refers to minimally invasive imaging of the heart using ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), or nuclear medicine (NM) imaging with PET or SPECT. These cardiac techniques are otherwise referred to as echocardiography, Cardiac MRI, Cardiac CT, Cardiac PET and Cardiac SPECT including myocardial perfusion imaging.

Ronald Marc Summers is an American radiologist and senior investigator at the Diagnostic Radiology Department at the NIH Clinical Center in Bethesda, Maryland. He is chief of the Clinical Image Processing Service and directs the Imaging Biomarkers and Computer-Aided Diagnosis (CAD) Laboratory. A researcher in the field of radiology and computer-aided diagnosis, he has co-authored over 500 journal articles and conference proceedings papers and is a coinventor on 12 patents. His lab has conducted research applying artificial intelligence and deep learning to radiology.

<span class="mw-page-title-main">Aidoc</span>

Aidoc Medical is an Israeli technology company that develops computer-aided simple triage and notification systems. Aidoc has obtained FDA and CE mark approval for its stroke, pulmonary embolism, cervical fracture, intracranial hemorrhage, intra-abdominal free gas, and incidental pulmonary embolism algorithms.

References

  1. 1 2 Goldenberg, R; Peled, N (September 2011). "Computer-aided simple triage". Int J Comput Assist Radiol Surg. 6 (5): 705–11. doi:10.1007/s11548-011-0552-x. PMID   21499779. S2CID   19623223.
  2. Echegaray, Sebastian; Zamora, Gilberto; Yu, Honggang; Luo, Wenbin; Soliz, Peter; Kardon, Randy (27 September 2011). "Automated Analysis of Optic Nerve Images for Detection and Staging of Papilledema" . Investigative Ophthalmology & Visual Science. 52 (10): 7470–8. doi:10.1167/iovs.11-7484. PMID   21862651.
  3. Arnoldi, E; Gebregziabher, M; Schoepf, UJ; et al. (May 2010). "Automated computer-aided stenosis detection at coronary CT angiography: initial experience". Eur Radiol. 20 (5): 1160–7. doi:10.1007/s00330-009-1644-7. PMID   19890640. S2CID   24454070.
  4. Halpern, EJ; Halpern, DJ (March 2011). "Diagnosis of coronary stenosis with CT angiography comparison of automated computer diagnosis with expert readings". Acad Radiol. 18 (3): 324–33. doi:10.1016/j.acra.2010.10.014. PMID   21215663.
  5. Kang, KW; Chang, HJ; Shim, H; et al. (April 2012). "Feasibility of an automatic computer-assisted algorithm for the detection of significant coronary artery disease in patients presenting with acute chest pain". Eur J Radiol. 81 (4): e640–6. doi:10.1016/j.ejrad.2012.01.017. PMID   22304980.
  6. Goldenberg, R; Eilot, D; Begelman, G; Walach, E; Ben-Ishai, E; Peled, N (November 2012). "Computer-aided simple triage (CAST) for coronary CT angiography (CCTA)". Int J Comput Assist Radiol Surg. 7 (6): 819–27. doi:10.1007/s11548-012-0684-7. PMID   22484719. S2CID   5627031.
  7. Meyer, M; Schoepf, UJ; Fink, C; Goldenberg, R; Apfaltrer, P; Gruettner, J; Vajcs, D; Schoenberg, SO; Henzler, T (2013). "Diagnostic performance evaluation of a computer-aided simple triage system for coronary CT angiography in patients with intermediate risk for acute coronary syndrome". Acad Radiol. 20 (8): 980–6. doi:10.1016/j.acra.2013.02.014. PMID   23735619.
  8. Zebra Medical Vision Announces CE Approval of Its Newest AI Imaging Algorithm - Automatic Identification of Brain Bleeds