A computer security model is a scheme for specifying and enforcing security policies. A security model may be founded upon a formal model of access rights, a model of computation, a model of distributed computing, or no particular theoretical grounding at all. A computer security model is implemented through a computer security policy.
For a more complete list of available articles on specific security models, see Category:Computer security models.
Information security, sometimes shortened to infosec, is the practice of protecting information by mitigating information risks. It is part of information risk management. It typically involves preventing or reducing the probability of unauthorized or inappropriate access to data or the unlawful use, disclosure, disruption, deletion, corruption, modification, inspection, recording, or devaluation of information. It also involves actions intended to reduce the adverse impacts of such incidents. Protected information may take any form, e.g., electronic or physical, tangible, or intangible. Information security's primary focus is the balanced protection of data confidentiality, integrity, and availability while maintaining a focus on efficient policy implementation, all without hampering organization productivity. This is largely achieved through a structured risk management process that involves:
In physical security and information security, access control (AC) is the selective restriction of access to a place or other resource, while access management describes the process. The act of accessing may mean consuming, entering, or using. Permission to access a resource is called authorization.
In computer security, an access-control list (ACL) is a list of permissions associated with a system resource. An ACL specifies which users or system processes are granted access to resources, as well as what operations are allowed on given resources. Each entry in a typical ACL specifies a subject and an operation. For instance,
The Bell–LaPadula model (BLP) is a state machine model used for enforcing access control in government and military applications. It was developed by David Elliott Bell, and Leonard J. LaPadula, subsequent to strong guidance from Roger R. Schell, to formalize the U.S. Department of Defense (DoD) multilevel security (MLS) policy. The model is a formal state transition model of computer security policy that describes a set of access control rules which use security labels on objects and clearances for subjects. Security labels range from the most sensitive, down to the least sensitive.
CISSP is an independent information security certification granted by the International Information System Security Certification Consortium, also known as ISC2.
The Biba Model or Biba Integrity Model developed by Kenneth J. Biba in 1975, is a formal state transition system of computer security policy describing a set of access control rules designed to ensure data integrity. Data and subjects are grouped into ordered levels of integrity. The model is designed so that subjects may not corrupt data in a level ranked higher than the subject, or be corrupted by data from a lower level than the subject.
In computer security, mandatory access control (MAC) refers to a type of access control by which a secured environment constrains the ability of a subject or initiator to access or modify on an object or target. In the case of operating systems, the subject is a process or thread, while objects are files, directories, TCP/UDP ports, shared memory segments, or IO devices. Subjects and objects each have a set of security attributes. Whenever a subject attempts to access an object, the operating system kernel examines these security attributes, examines the authorization rules in place, and decides whether to grant access. A database management system, in its access control mechanism, can also apply mandatory access control; in this case, the objects are tables, views, procedures, etc.
Multilevel security or multiple levels of security (MLS) is the application of a computer system to process information with incompatible classifications, permit access by users with different security clearances and needs-to-know, and prevent users from obtaining access to information for which they lack authorization. There are two contexts for the use of multilevel security.
The Clark–Wilson integrity model provides a foundation for specifying and analyzing an integrity policy for a computing system.
The Graham–Denning model is a computer security model that shows how subjects and objects should be securely created and deleted. It also addresses how to assign specific access rights. It is mainly used in access control mechanisms for distributed systems. There are three main parts to the model: A set of subjects, a set of objects, and a set of eight rules. A subject may be a process or a user that makes a request to access a resource. An object is the resource that a user or process wants to access.
Generally, security modes refer to information systems security modes of operations used in mandatory access control (MAC) systems. Often, these systems contain information at various levels of security classification. The mode of operation is determined by:
Network Access Protection (NAP) is a Microsoft technology for controlling network access of a computer, based on its health. It was first included in Windows Vista and Windows Server 2008 and backported to Windows XP Service Pack 3. With NAP, system administrators of an organization can define policies for system health requirements. Examples of system health requirements are whether the computer has the most recent operating system updates installed, whether the computer has the latest version of the anti-virus software signature, or whether the computer has a host-based firewall installed and enabled. Computers with a NAP client will have their health status evaluated upon establishing a network connection. NAP can restrict or deny network access to the computers that are not in compliance with the defined health requirements.
In computer science, an access control matrix or access matrix is an abstract, formal security model of protection state in computer systems, that characterizes the rights of each subject with respect to every object in the system. It was first introduced by Butler W. Lampson in 1971.
In computer security, organization-based access control (OrBAC) is an access control model first presented in 2003. The current approaches of the access control rest on the three entities to control the access the policy specifies that some subject has the permission to realize some action on some object.
In computer sciences, the separation of protection and security is an application of the separation of mechanism and policy principle. The protection mechanism is supposed to be a component that implements the security policy. However, many frameworks consider both as security controls of varying types. For example, protection mechanisms would be considered technical controls, while a policy would be considered an administrative control.
The kernel is a computer program at the core of a computer's operating system and generally has complete control over everything in the system. The kernel is also responsible for preventing and mitigating conflicts between different processes. It is the portion of the operating system code that is always resident in memory and facilitates interactions between hardware and software components. A full kernel controls all hardware resources via device drivers, arbitrates conflicts between processes concerning such resources, and optimizes the utilization of common resources e.g. CPU & cache usage, file systems, and network sockets. On most systems, the kernel is one of the first programs loaded on startup. It handles the rest of startup as well as memory, peripherals, and input/output (I/O) requests from software, translating them into data-processing instructions for the central processing unit.
Security service is a service, provided by a layer of communicating open systems, which ensures adequate security of the systems or of data transfers as defined by ITU-T X.800 Recommendation.
X.800 and ISO 7498-2 are technically aligned. This model is widely recognized
Control system security, or industrial control system (ICS) cybersecurity, is the prevention of interference with the proper operation of industrial automation and control systems. These control systems manage essential services including electricity, petroleum production, water, transportation, manufacturing, and communications. They rely on computers, networks, operating systems, applications, and programmable controllers, each of which could contain security vulnerabilities. The 2010 discovery of the Stuxnet worm demonstrated the vulnerability of these systems to cyber incidents. The United States and other governments have passed cyber-security regulations requiring enhanced protection for control systems operating critical infrastructure.
In computer security, general access control includes identification, authorization, authentication, access approval, and audit. A more narrow definition of access control would cover only access approval, whereby the system makes a decision to grant or reject an access request from an already authenticated subject, based on what the subject is authorized to access. Authentication and access control are often combined into a single operation, so that access is approved based on successful authentication, or based on an anonymous access token. Authentication methods and tokens include passwords, biometric scans, physical keys, electronic keys and devices, hidden paths, social barriers, and monitoring by humans and automated systems.
Endpoint security or endpoint protection is an approach to the protection of computer networks that are remotely bridged to client devices. The connection of endpoint devices such as laptops, tablets, mobile phones, and other wireless devices to corporate networks creates attack paths for security threats. Endpoint security attempts to ensure that such devices follow compliance to standards.