Lattice-based access control

Last updated

In computer security, lattice-based access control (LBAC) is a complex access control model based on the interaction between any combination of objects (such as resources, computers, and applications) and subjects (such as individuals, groups or organizations).

In this type of label-based mandatory access control model, a lattice is used to define the levels of security that an object may have and that a subject may have access to. The subject is only allowed to access an object if the security level of the subject is greater than or equal to that of the object.

Mathematically, the security level access may also be expressed in terms of the lattice (a partial order set) where each object and subject have a greatest lower bound (meet) and least upper bound (join) of access rights. For example, if two subjects A and B need access to an object, the security level is defined as the meet of the levels of A and B. In another example, if two objects X and Y are combined, they form another object Z, which is assigned the security level formed by the join of the levels of X and Y.

LBAC is also known as a label-based access control (or rule-based access control) restriction as opposed to role-based access control (RBAC).

Lattice based access control models were first formally defined by Denning (1976); see also Sandhu (1993).

See also

Related Research Articles

The Lightweight Directory Access Protocol is an open, vendor-neutral, industry standard application protocol for accessing and maintaining distributed directory information services over an Internet Protocol (IP) network. Directory services play an important role in developing intranet and Internet applications by allowing the sharing of information about users, systems, networks, services, and applications throughout the network. As examples, directory services may provide any organized set of records, often with a hierarchical structure, such as a corporate email directory. Similarly, a telephone directory is a list of subscribers with an address and a phone number.

<span class="mw-page-title-main">Access control</span> Selective restriction of access to a place or other resource, allowing only authorized users

In physical security and information security, access control (AC) is the selective restriction of access to a place or other resource, while access management describes the process. The act of accessing may mean consuming, entering, or using. Permission to access a resource is called authorization.

In the security engineering subspecialty of computer science, a trusted system is one that is relied upon to a specified extent to enforce a specified security policy. This is equivalent to saying that a trusted system is one whose failure would break a security policy.

In computer security, an access-control list (ACL) is a list of permissions associated with a system resource. An ACL specifies which users or system processes are granted access to resources, as well as what operations are allowed on given resources. Each entry in a typical ACL specifies a subject and an operation. For instance,

In computer systems security, role-based access control (RBAC) or role-based security is an approach to restricting system access to authorized users, and to implementing mandatory access control (MAC) or discretionary access control (DAC).

The Bell–LaPadula model (BLP) is a state machine model used for enforcing access control in government and military applications. It was developed by David Elliott Bell, and Leonard J. LaPadula, subsequent to strong guidance from Roger R. Schell, to formalize the U.S. Department of Defense (DoD) multilevel security (MLS) policy. The model is a formal state transition model of computer security policy that describes a set of access control rules which use security labels on objects and clearances for subjects. Security labels range from the most sensitive, down to the least sensitive.

Rule-set-based access control (RSBAC) is an open source access control framework for current Linux kernels, which has been in stable production use since January 2000.

In computer security, mandatory access control (MAC) refers to a type of access control by which the operating system or database constrains the ability of a subject or initiator to access or generally perform some sort of operation on an object or target. In the case of operating systems, a subject is usually a process or thread; objects are constructs such as files, directories, TCP/UDP ports, shared memory segments, IO devices, etc. Subjects and objects each have a set of security attributes. Whenever a subject attempts to access an object, an authorization rule enforced by the operating system kernel examines these security attributes and decides whether the access can take place. Any operation by any subject on any object is tested against the set of authorization rules to determine if the operation is allowed. A database management system, in its access control mechanism, can also apply mandatory access control; in this case, the objects are tables, views, procedures, etc.

In computer security, discretionary access control (DAC) is a type of access control defined by the Trusted Computer System Evaluation Criteria (TCSEC) as a means of restricting access to objects based on the identity of subjects and/or groups to which they belong. The controls are discretionary in the sense that a subject with a certain access permission is capable of passing that permission on to any other subject.

Multilevel security or multiple levels of security (MLS) is the application of a computer system to process information with incompatible classifications, permit access by users with different security clearances and needs-to-know, and prevent users from obtaining access to information for which they lack authorization. There are two contexts for the use of multilevel security.

Context-based access control (CBAC) is a feature of firewall software, which intelligently filters TCP and UDP packets based on application layer protocol session information. It can be used for intranets, extranets and internets.

The Graham–Denning model is a computer security model that shows how subjects and objects should be securely created and deleted. It also addresses how to assign specific access rights. It is mainly used in access control mechanisms for distributed systems. There are three main parts to the model: A set of subjects, a set of objects, and a set of eight rules. A subject may be a process or a user that makes a request to access a resource. An object is the resource that a user or process wants to access.

A computer security model is a scheme for specifying and enforcing security policies. A security model may be founded upon a formal model of access rights, a model of computation, a model of distributed computing, or no particular theoretical grounding at all. A computer security model is implemented through a computer security policy.

The concept of type enforcement (TE), in the field of information technology, is an access control mechanism for regulating access in computer systems. Implementing TE gives priority to mandatory access control (MAC) over discretionary access control (DAC). Access clearance is first given to a subject accessing objects based on rules defined in an attached security context. A security context in a domain is defined by a domain security policy. In the Linux security module (LSM) in SELinux, the security context is an extended attribute. Type enforcement implementation is a prerequisite for MAC, and a first step before multilevel security (MLS) or its replacement multi categories security (MCS). It is a complement of role-based access control (RBAC).

<span class="mw-page-title-main">Organisation-based access control</span> Access control model in computer security

In computer security, organization-based access control (OrBAC) is an access control model first presented in 2003. The current approaches of the access control rest on the three entities to control the access the policy specifies that some subject has the permission to realize some action on some object.

Attribute-based access control (ABAC), also known as policy-based access control for IAM, defines an access control paradigm whereby a subject's authorization to perform a set of operations is determined by evaluating attributes associated with the subject, object, requested operations, and, in some cases, environment attributes.

<span class="mw-page-title-main">Trusted Computer System Evaluation Criteria</span>

Trusted Computer System Evaluation Criteria (TCSEC) is a United States Government Department of Defense (DoD) standard that sets basic requirements for assessing the effectiveness of computer security controls built into a computer system. The TCSEC was used to evaluate, classify, and select computer systems being considered for the processing, storage, and retrieval of sensitive or classified information.

Delegation is the process of a computer user handing over its authentication credentials to another user. In role-based access control models, delegation of authority involves delegating roles that a user can assume or the set of permissions that the user can acquire, to other users.

In computer security, general access control includes identification, authorization, authentication, access approval, and audit. A more narrow definition of access control would cover only access approval, whereby the system makes a decision to grant or reject an access request from an already authenticated subject, based on what the subject is authorized to access. Authentication and access control are often combined into a single operation, so that access is approved based on successful authentication, or based on an anonymous access token. Authentication methods and tokens include passwords, biometric scans, physical keys, electronic keys and devices, hidden paths, social barriers, and monitoring by humans and automated systems.

Graph-based access control (GBAC) is a declarative way to define access rights, task assignments, recipients and content in information systems. Access rights are granted to objects like files or documents, but also business objects such as an account. GBAC can also be used for the assignment of agents to tasks in workflow environments. Organizations are modeled as a specific kind of semantic graph comprising the organizational units, the roles and functions as well as the human and automatic agents. The main difference with other approaches such as role-based access control or attribute-based access control is that in GBAC access rights are defined using an organizational query language instead of total enumeration.

References