In computer systems security, role-based access control (RBAC) [1] [2] or role-based security [3] is an approach to restricting system access to authorized users, and to implementing mandatory access control (MAC) or discretionary access control (DAC).
Role-based access control is a policy-neutral access control mechanism defined around roles and privileges. The components of RBAC such as role-permissions, user-role and role-role relationships make it simple to perform user assignments. A study by NIST has demonstrated that RBAC addresses many needs of commercial and government organizations. [4] RBAC can be used to facilitate administration of security in large organizations with hundreds of users and thousands of permissions. Although RBAC is different from MAC and DAC access control frameworks, it can enforce these policies without any complication.
Within an organization, roles are created for various job functions. The permissions to perform certain operations are assigned to specific roles. Since users are not assigned permissions directly, but only acquire them through their role (or roles), management of individual user rights becomes a matter of simply assigning appropriate roles to the user's account; this simplifies common operations, such as adding a user, or changing a user's department.
Three primary rules are defined for RBAC:
Additional constraints may be applied as well, and roles can be combined in a hierarchy where higher-level roles subsume permissions owned by sub-roles.
With the concepts of role hierarchy and constraints, one can control RBAC to create or simulate lattice-based access control (LBAC). Thus RBAC can be considered to be a superset of LBAC.
When defining an RBAC model, the following conventions are useful:
A constraint places a restrictive rule on the potential inheritance of permissions from opposing roles. Thus it can be used to achieve appropriate separation of duties. For example, the same person should not be allowed to both create a login account and to authorize the account creation.
Thus, using set theory notation:
A subject may have multiple simultaneous sessions with/in different roles.
The NIST/ANSI/INCITS RBAC standard (2004) recognizes three levels of RBAC: [5]
RBAC is a flexible access control technology whose flexibility allows it to implement DAC [6] or MAC. [7] DAC with groups (e.g., as implemented in POSIX file systems) can emulate RBAC. [8] MAC can simulate RBAC if the role graph is restricted to a tree rather than a partially ordered set. [9]
Prior to the development of RBAC, the Bell-LaPadula (BLP) model was synonymous with MAC and file system permissions were synonymous with DAC. These were considered to be the only known models for access control: if a model was not BLP, it was considered to be a DAC model, and vice versa. Research in the late 1990s demonstrated that RBAC falls in neither category. [10] [11] Unlike context-based access control (CBAC), RBAC does not look at the message context (such as a connection's source). RBAC has also been criticized for leading to role explosion, [12] a problem in large enterprise systems which require access control of finer granularity than what RBAC can provide as roles are inherently assigned to operations and data types. In resemblance to CBAC, an Entity-Relationship Based Access Control (ERBAC, although the same acronym is also used for modified RBAC systems, [13] such as Extended Role-Based Access Control [14] ) system is able to secure instances of data by considering their association to the executing subject. [15]
Access control lists (ACLs) are used in traditional discretionary access-control (DAC) systems to affect low-level data-objects. RBAC differs from ACL in assigning permissions to operations which change the direct-relations between several entities (see: ACLg below). For example, an ACL could be used for granting or denying write access to a particular system file, but it wouldn't dictate how that file could be changed. In an RBAC-based system, an operation might be to 'create a credit account' transaction in a financial application or to 'populate a blood sugar level test' record in a medical application. A Role is thus a sequence of operations within a larger activity. RBAC has been shown to be particularly well suited to separation of duties (SoD) requirements, which ensure that two or more people must be involved in authorizing critical operations. Necessary and sufficient conditions for safety of SoD in RBAC have been analyzed. An underlying principle of SoD is that no individual should be able to effect a breach of security through dual privilege. By extension, no person may hold a role that exercises audit, control or review authority over another, concurrently held role. [16] [17]
Then again, a "minimal RBAC Model", RBACm, can be compared with an ACL mechanism, ACLg, where only groups are permitted as entries in the ACL. Barkley (1997) [18] showed that RBACm and ACLg are equivalent.
In modern SQL implementations, like ACL of the CakePHP framework, ACLs also manage groups and inheritance in a hierarchy of groups. Under this aspect, specific "modern ACL" implementations can be compared with specific "modern RBAC" implementations, better than "old (file system) implementations".
For data interchange, and for "high level comparisons", ACL data can be translated to XACML.
Attribute-based access control or ABAC is a model which evolves from RBAC to consider additional attributes in addition to roles and groups. In ABAC, it is possible to use attributes of:
ABAC is policy-based in the sense that it uses policies rather than static permissions to define what is allowed or what is not allowed.
Relationship-based access control or ReBAC is a model which evolves from RBAC. In ReBAC, a subject's permission to access a resource is defined by the presence of relationships between those subjects and resources.
The advantage of this model is that allows for fine-grained permissions; for example, in a social network where users can share posts with other specific users. [19]
The use of RBAC to manage user privileges (computer permissions) within a single system or application is widely accepted as a best practice. A 2010 report prepared for NIST by the Research Triangle Institute analyzed the economic value of RBAC for enterprises, and estimated benefits per employee from reduced employee downtime, more efficient provisioning, and more efficient access control policy administration. [20]
In an organization with a heterogeneous IT infrastructure and requirements that span dozens or hundreds of systems and applications, using RBAC to manage sufficient roles and assign adequate role memberships becomes extremely complex without hierarchical creation of roles and privilege assignments. [21] Newer systems extend the older NIST RBAC model [22] to address the limitations of RBAC for enterprise-wide deployments. The NIST model was adopted as a standard by INCITS as ANSI/INCITS 359-2004. A discussion of some of the design choices for the NIST model has also been published. [23]
Role based access control interference is a relatively new issue in security applications, where multiple user accounts with dynamic access levels may lead to encryption key instability, allowing an outside user to exploit the weakness for unauthorized access. Key sharing applications within dynamic virtualized environments have shown some success in addressing this problem. [24]
In physical security and information security, access control (AC) is the selective restriction of access to a place or other resource, while access management describes the process. The act of accessing may mean consuming, entering, or using. Permission to access a resource is called authorization.
In computer security, an access-control list (ACL) is a list of permissions associated with a system resource. An ACL specifies which users or system processes are granted access to resources, as well as what operations are allowed on given resources. Each entry in a typical ACL specifies a subject and an operation. For instance,
Rule-set-based access control (RSBAC) is an open source access control framework for current Linux kernels, which has been in stable production use since January 2000.
In computer security, mandatory access control (MAC) refers to a type of access control by which a secured environment constrains the ability of a subject or initiator to access or modify on an object or target. In the case of operating systems, the subject is a process or thread, while objects are files, directories, TCP/UDP ports, shared memory segments, or IO devices. Subjects and objects each have a set of security attributes. Whenever a subject attempts to access an object, the operating system kernel examines these security attributes, examines the authorization rules in place, and decides whether to grant access. A database management system, in its access control mechanism, can also apply mandatory access control; in this case, the objects are tables, views, procedures, etc.
In computer security, discretionary access control (DAC) is a type of access control defined by the Trusted Computer System Evaluation Criteria (TCSEC) as a means of restricting access to objects based on the identity of subjects and/or groups to which they belong. The controls are discretionary in the sense that a subject with a certain access permission is capable of passing that permission on to any other subject.
Identity management (IdM), also known as identity and access management, is a framework of policies and technologies to ensure that the right users have the appropriate access to technology resources. IdM systems fall under the overarching umbrellas of IT security and data management. Identity and access management systems not only identify, authenticate, and control access for individuals who will be utilizing IT resources but also the hardware and applications employees need to access.
A computer security model is a scheme for specifying and enforcing security policies. A security model may be founded upon a formal model of access rights, a model of computation, a model of distributed computing, or no particular theoretical grounding at all. A computer security model is implemented through a computer security policy.
The concept of type enforcement (TE), in the field of information technology, is an access control mechanism for regulating access in computer systems. Implementing TE gives priority to mandatory access control (MAC) over discretionary access control (DAC). Access clearance is first given to a subject accessing objects based on rules defined in an attached security context. A security context in a domain is defined by a domain security policy. In the Linux security module (LSM) in SELinux, the security context is an extended attribute. Type enforcement implementation is a prerequisite for MAC, and a first step before multilevel security (MLS) or its replacement multi categories security (MCS). It is a complement of role-based access control (RBAC).
In computer security, lattice-based access control (LBAC) is a complex access control model based on the interaction between any combination of objects and subjects.
In computing, delegated administration or delegation of control describes the decentralization of role-based-access-control systems. Many enterprises use a centralized model of access control. For large organizations, this model scales poorly and IT teams become burdened with menial role-change requests. These requests — often used when hire, fire, and role-change events occur in an organization — can incur high latency times or suffer from weak security practices.
AGDLP briefly summarizes Microsoft's recommendations for implementing role-based access controls (RBAC) using nested groups in a native-mode Active Directory (AD) domain: User and computer accounts are members of global groups that represent business roles, which are members of domain local groups that describe resource permissions or user rights assignments. AGUDLP and AGLP summarize similar RBAC implementation schemes in Active Directory forests and in Windows NT domains, respectively.
In computer security, organization-based access control (OrBAC) is an access control model first presented in 2003. The current approaches of the access control rest on the three entities to control the access the policy specifies that some subject has the permission to realize some action on some object.
PERMIS is a sophisticated policy-based authorization system that implements an enhanced version of the U.S. National Institute of Standards and Technology (NIST) standard Role-Based Access Control (RBAC) model. PERMIS supports the distributed assignment of both roles and attributes to users by multiple distributed attribute authorities, unlike the NIST model which assumes the centralised assignment of roles to users. PERMIS provides a cryptographically secure privilege management infrastructure (PMI) using public key encryption technologies and X.509 Attribute certificates to maintain users' attributes. PERMIS does not provide any authentication mechanism, but leaves it up to the application to determine what to use. PERMIS's strength comes from its ability to be integrated into virtually any application and any authentication scheme like Shibboleth (Internet2), Kerberos, username/passwords, Grid proxy certificates and Public Key Infrastructure (PKI).
Attribute-based access control (ABAC), also known as policy-based access control for IAM, defines an access control paradigm whereby a subject's authorization to perform a set of operations is determined by evaluating attributes associated with the subject, object, requested operations, and, in some cases, environment attributes.
The NIST RBAC model is a standardized definition of role-based access control. Although originally developed by the National Institute of Standards and Technology, the standard was adopted and is copyrighted and distributed as INCITS 359-2004 by the International Committee for Information Technology Standards (INCITS). The latest version is INCITS 359-2012. It is managed by INCITS committee CS1.
In role based access control, the role hierarchy defines an inheritance relationship among roles. For example, the role structure for a bank may treat all employees as members of the ‘employee’ role. Above this may be roles ‘department manager’, and ‘accountant’, which inherit all permissions of the ‘employee’ role, while above ‘department manager’ could be ‘savings manager’, ‘loan manager’.
Delegation is the process of a computer user handing over its authentication credentials to another user. In role-based access control models, delegation of authority involves delegating roles that a user can assume or the set of permissions that the user can acquire, to other users.
In computer security, general access control includes identification, authorization, authentication, access approval, and audit. A more narrow definition of access control would cover only access approval, whereby the system makes a decision to grant or reject an access request from an already authenticated subject, based on what the subject is authorized to access. Authentication and access control are often combined into a single operation, so that access is approved based on successful authentication, or based on an anonymous access token. Authentication methods and tokens include passwords, biometric scans, physical keys, electronic keys and devices, hidden paths, social barriers, and monitoring by humans and automated systems.
ERP Security is a wide range of measures aimed at protecting Enterprise resource planning (ERP) systems from illicit access ensuring accessibility and integrity of system data. ERP system is a computer software that serves to unify the information intended to manage the organization including Production, Supply Chain Management, Financial Management, Human Resource Management, Customer Relationship Management, Enterprise Performance Management.
In computer systems security, Relationship-based access control (ReBAC) defines an authorization paradigm where a subject's permission to access a resource is defined by the presence of relationships between those subjects and resources.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)