Concrete cone failure

Last updated
Concrete Cone Model Concrete Cone Model.png
Concrete Cone Model

Concrete cone is one of the failure modes of anchors in concrete, loaded by a tensile force. The failure is governed by crack growth in concrete, which forms a typical cone shape having the anchor's axis as revolution axis.

Contents

Mechanical models

ACI 349-85

Under tension loading, the concrete cone failure surface has 45° inclination. A constant distribution of tensile stresses is then assumed. The concrete cone failure load of a single anchor in uncracked concrete unaffected by edge influences or overlapping cones of neighboring anchors is given by: [2]

Where:

- tensile strength of concrete

- Cone's projected area

Concrete capacity design (CCD) approach for fastening to concrete

Under tension loading, the concrete capacity of a single anchor is calculated assuming an inclination between the failure surface and surface of the concrete member of about 35°. The concrete cone failure load of a single anchor in uncracked concrete unaffected by edge influences or overlapping cones of neighboring anchors is given by: [2]

,

Where:

- 13.5 for post-installed fasteners, 15.5 for cast-in-site fasteners

- Concrete compressive strength measured on cubes [MPa]

- Embedment depth of the anchor [mm]

The model is based on fracture mechanics theory and takes into account the size effect, particularly for the factor which differentiates from expected from the first model. In the case of concrete tensile failure with increasing member size, the failure load increases less than the available failure surface; that means the nominal stress at failure (peak load divided by failure area) decreases. [3]

Overlapping Areas in case of group of anchors Concrete Cone Group.png
Overlapping Areas in case of group of anchors

Current codes take into account a reduction of the theoretical concrete cone capacity considering: (i) the presence of edges; (ii) the overlapping cones due to group effect; (iii) the presence of an eccentricity of the tension load. [4]

Difference between models

The tension failure loads predicted by the CCD method fits experimental results over a wide range of embedment depth (e.g. 100 – 600 mm). [2] Anchor load bearing capacity provided by ACI 349 does not consider size effect , thus an underestimated value for the load-carrying capacity is obtained for large embedment depths. [2]

Influence of the head size

For large head size, the bearing pressure in the bearing zone diminishes. An increase of the anchor's load-carrying capacity is observed . Different modification factors were proposed in technical literature. [5] [6]

Un-cracked and cracked concrete

Anchors, experimentally show a lower load-bearing capacity when installed in a cracked concrete member. The reduction is up to 40% with respect to the un-cracked condition, depending on the crack width. [7] The reduction is due to the impossibility to transfer both normal and tangential stresses at the crack plane.

Related Research Articles

<span class="mw-page-title-main">Reinforced concrete</span> Concrete with rebar

Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel bars (rebar) and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In corrosion engineering terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from corrosion.

<span class="mw-page-title-main">Ductility</span> Degree to which a material under stress irreversibly deforms before failure

Ductility is a mechanical property commonly described as a material's amenability to drawing. In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stress before failure. Ductility is an important consideration in engineering and manufacturing. It defines a material's suitability for certain manufacturing operations and its capacity to absorb mechanical overload. Some metals that are generally described as ductile include gold and copper, while platinum is the most ductile of all metals in pure form. However, not all metals experience ductile failure as some can be characterized with brittle failure like cast iron. Polymers generally can be viewed as ductile materials as they typically allow for plastic deformation.

<span class="mw-page-title-main">Stress–strain curve</span> Curve representing a materials response to applied forces

In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined. These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength.

<span class="mw-page-title-main">Fracture</span> Split of materials or structures under stress

Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.

The field of strength of materials typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

<span class="mw-page-title-main">Compressive strength</span> Capacity of a material or structure to withstand loads tending to reduce size

In mechanics, compressive strength is the capacity of a material or structure to withstand loads tending to reduce size. In other words, compressive strength resists compression, whereas tensile strength resists tension. In the study of strength of materials, tensile strength, compressive strength, and shear strength can be analyzed independently.

<span class="mw-page-title-main">Fatigue (material)</span> Initiation and propagation of cracks in a material due to cyclic loading

In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.

<span class="mw-page-title-main">Fracture mechanics</span> Study of propagation of cracks in materials

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.

<span class="mw-page-title-main">Fatigue limit</span> Maximum stress that wont cause fatigue failure

The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. Some metals such as ferrous alloys and titanium alloys have a distinct limit, whereas others such as aluminium and copper do not and will eventually fail even from small stress amplitudes. Where materials do not have a distinct limit the term fatigue strength or endurance strength is used and is defined as the maximum value of completely reversed bending stress that a material can withstand for a specified number of cycles without a fatigue failure.

<span class="mw-page-title-main">Anchor bolt</span> Connection elements that transfer loads and shear forces to concrete.

Anchor bolts are used to connect structural and non-structural elements to concrete. The connection can be made by a variety of different components: anchor bolts, steel plates, or stiffeners. Anchor bolts transfer different types of load: tension forces and shear forces.

Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure (yield). Depending on the conditions most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.

<span class="mw-page-title-main">T-beam</span> T-shaped construction module

A T-beam, used in construction, is a load-bearing structure of reinforced concrete, wood or metal, with a T-shaped cross section. The top of the T-shaped cross section serves as a flange or compression member in resisting compressive stresses. The web of the beam below the compression flange serves to resist shear stress. When used for highway bridges the beam incorporates reinforcing bars in the bottom of the beam to resist the tensile stresses which occur during bending.

Concrete has relatively high compressive strength, but significantly lower tensile strength. The compressive strength is typically controlled with the ratio of water to cement when forming the concrete, and tensile strength is increased by additives, typically steel, to create reinforced concrete. In other words we can say concrete is made up of sand, ballast, cement and water.

This information sets out some of the basic considerations taken into account by the lifting design engineer.

<span class="mw-page-title-main">Tensile testing</span> Test procedure to determine mechanical properties of a specimen.

Tensile testing, also known as tension testing, is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials.

A reinforced concrete column is a structural member designed to carry compressive loads, composed of concrete with an embedded steel frame to provide reinforcement. For design purposes, the columns are separated into two categories: short columns and slender columns.

<span class="mw-page-title-main">Size effect on structural strength</span> Deviation with the scale in the theories of elastic or plastic structures

According to the classical theories of elastic or plastic structures made from a material with non-random strength (ft), the nominal strength (σN) of a structure is independent of the structure size (D) when geometrically similar structures are considered. Any deviation from this property is called the size effect. For example, conventional strength of materials predicts that a large beam and a tiny beam will fail at the same stress if they are made of the same material. In the real world, because of size effects, a larger beam will fail at a lower stress than a smaller beam.

<span class="mw-page-title-main">Crack spacing of reinforced concrete</span>

Concrete is a brittle material and can only withstand small amount of tensile strain due to stress before cracking. When a reinforced concrete member is put in tension, after cracking, the member elongates by widening of cracks and by formation of new cracks.

The microplane model, conceived in 1984, is a material constitutive model for progressive softening damage. Its advantage over the classical tensorial constitutive models is that it can capture the oriented nature of damage such as tensile cracking, slip, friction, and compression splitting, as well as the orientation of fiber reinforcement. Another advantage is that the anisotropy of materials such as gas shale or fiber composites can be effectively represented. To prevent unstable strain localization, this model must be used in combination with some nonlocal continuum formulation. Prior to 2000, these advantages were outweighed by greater computational demands of the material subroutine, but thanks to huge increase of computer power, the microplane model is now routinely used in computer programs, even with tens of millions of finite elements.

This glossary of structural engineering terms pertains specifically to structural engineering and its sub-disciplines. Please see glossary of engineering for a broad overview of the major concepts of engineering.

References

  1. 1 2 Cook, Ronald; Doerr, G T; Klingner, R.E. (2010). Design Guide For Steel To Concrete Connections. University Of Texas Austin.
  2. 1 2 3 4 Fuchs, Werner; Eligehausen, Rolf (1995). "Concrete Capacity Design (CCD) Approach for Fastening to Concrete". ACI Structural Journal. 109 (January): 1–4. ISSN   0889-3241.
  3. Ožbolt, Joško; Eligehausen, Rolf; Reinhardt, Hans-Wolf (1999). "Size effect on the concrete cone pull-out load". International Journal of Fracture. 95: 391–404. ISSN   0376-9429.
  4. ACI (2004). "ACI 349.2 Guide to the Concrete Capacity Design ( CCD ) Method — Embedment Design Examples". Concrete (Ccd): 1–77.
  5. Ožbolt, Joško; Eligehausen, Rolf; Periškić, G.; Mayer, U. (2007). "3D FE analysis of anchor bolts with large embedment depths". Engineering Fracture Mechanics. 74 (1–2): 168–178. doi:10.1016/j.engfracmech.2006.01.019. ISSN   0013-7944.
  6. Nilforoush, R.; Nilsson, M.; Elfgren, L.; Ožbolt, J.; Hofmann, J.; Eligehausen, R. (2017). "Tensile capacity of anchor bolts in uncracked concrete: Influence of member thickness and anchor's head size". ACI Structural Journal. 114 (6): 1519–1530. doi:10.14359/51689503. ISSN   0889-3241.
  7. Mallèe, Rainer; Eligehausen, Rolf; Silva, John F (2006). Anchors In Concrete Structures. Ernst&Shon. ISBN   978-3433011430.

See also