Contact order

Last updated

The contact order of a protein is a measure of the locality of the inter-amino acid contacts in the protein's native state tertiary structure. [1] It is calculated as the average sequence distance between residues that form native contacts in the folded protein divided by the total length of the protein. Higher contact orders indicate longer folding times, [2] [3] and low contact order has been suggested as a predictor of potential downhill folding, or protein folding that occurs without a free energy barrier. [4] This effect is thought to be due to the lower loss of conformational entropy associated with the formation of local as opposed to nonlocal contacts. [3]

Relative contact order (CO) is formally defined as:

where N is the total number of contacts, ΔSi,j is the sequence separation, in residues, between contacting residues i and j, and L is the total number of residues in the protein. [2] The value of contact order typically ranges from 5% to 25% for single-domain proteins, with lower contact order belonging to mainly helical proteins, and higher contact order belonging to proteins with a high beta-sheet content.

Protein structure prediction methods are more accurate in predicting the structures of proteins with low contact orders. This may be partly because low contact order proteins tend to be small, but is likely to be explained by the smaller number of possible long-range residue-residue interactions to be considered during global optimization procedures that minimize an energy function. [5] Even successful structure prediction methods such as the Rosetta method overproduce low-contact-order structure predictions compared to the distributions observed in experimentally determined protein structures. [3]

The percentage of the natively folded contact order can also be used as a measure of the "nativeness" of folding transition states. Phi value analysis in concert with molecular dynamics has produced transition-state models whose contact order is close to that of the folded state in proteins that are small and fast-folding. [6] Further, contact orders in transition states as well as those in native states are highly correlated with overall folding time. [7]

In addition to their role in structure prediction, contact orders can themselves be predicted based on a sequence alignment, which can be useful in classifying the fold of a novel sequence with some degree of homology to known sequences. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Protein secondary structure</span> General three-dimensional form of local segments of proteins

Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. The two most common secondary structural elements are alpha helices and beta sheets, though beta turns and omega loops occur as well. Secondary structure elements typically spontaneously form as an intermediate before the protein folds into its three dimensional tertiary structure.

<span class="mw-page-title-main">Protein tertiary structure</span> Three dimensional shape of a protein

Protein tertiary structure is the three-dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains and the backbone may interact and bond in a number of ways. The interactions and bonds of side chains within a particular protein determine its tertiary structure. The protein tertiary structure is defined by its atomic coordinates. These coordinates may refer either to a protein domain or to the entire tertiary structure. A number of these structures may bind to each other, forming a quaternary structure.

<span class="mw-page-title-main">Protein folding</span> Change of a linear protein chain to a 3D structure

Protein folding is the physical process by which a protein, after synthesis by a ribosome as a linear chain of amino acids, changes from an unstable random coil into a more ordered three-dimensional structure. This structure permits the protein to become biologically functional.

<span class="mw-page-title-main">Protein structure prediction</span> Type of biological prediction

Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its secondary and tertiary structure from primary structure. Structure prediction is different from the inverse problem of protein design. Protein structure prediction is one of the most important goals pursued by computational biology; it is important in medicine and biotechnology.

<span class="mw-page-title-main">Structural alignment</span> Aligning molecular sequences using sequence and structural information

Structural alignment attempts to establish homology between two or more polymer structures based on their shape and three-dimensional conformation. This process is usually applied to protein tertiary structures but can also be used for large RNA molecules. In contrast to simple structural superposition, where at least some equivalent residues of the two structures are known, structural alignment requires no a priori knowledge of equivalent positions. Structural alignment is a valuable tool for the comparison of proteins with low sequence similarity, where evolutionary relationships between proteins cannot be easily detected by standard sequence alignment techniques. Structural alignment can therefore be used to imply evolutionary relationships between proteins that share very little common sequence. However, caution should be used in using the results as evidence for shared evolutionary ancestry because of the possible confounding effects of convergent evolution by which multiple unrelated amino acid sequences converge on a common tertiary structure.

<span class="mw-page-title-main">Structural bioinformatics</span> Bioinformatics subfield

Structural bioinformatics is the branch of bioinformatics that is related to the analysis and prediction of the three-dimensional structure of biological macromolecules such as proteins, RNA, and DNA. It deals with generalizations about macromolecular 3D structures such as comparisons of overall folds and local motifs, principles of molecular folding, evolution, binding interactions, and structure/function relationships, working both from experimentally solved structures and from computational models. The term structural has the same meaning as in structural biology, and structural bioinformatics can be seen as a part of computational structural biology. The main objective of structural bioinformatics is the creation of new methods of analysing and manipulating biological macromolecular data in order to solve problems in biology and generate new knowledge.

<span class="mw-page-title-main">Intrinsically disordered proteins</span> Protein without a fixed 3D structure

In molecular biology, an intrinsically disordered protein (IDP) is a protein that lacks a fixed or ordered three-dimensional structure, typically in the absence of its macromolecular interaction partners, such as other proteins or RNA. IDPs range from fully unstructured to partially structured and include random coil, molten globule-like aggregates, or flexible linkers in large multi-domain proteins. They are sometimes considered as a separate class of proteins along with globular, fibrous and membrane proteins.

Phi value analysis, analysis, or -value analysis is an experimental protein engineering technique for studying the structure of the folding transition state of small protein domains that fold in a two-state manner. The structure of the folding transition state is hard to find using methods such as protein NMR or X-ray crystallography because folding transitions states are mobile and partly unstructured by definition. In -value analysis, the folding kinetics and conformational folding stability of the wild-type protein are compared with those of point mutants to find phi values. These measure the mutant residue's energetic contribution to the folding transition state, which reveals the degree of native structure around the mutated residue in the transition state, by accounting for the relative free energies of the unfolded state, the folded state, and the transition state for the wild-type and mutant proteins.

<span class="mw-page-title-main">Folding funnel</span>

The folding funnel hypothesis is a specific version of the energy landscape theory of protein folding, which assumes that a protein's native state corresponds to its free energy minimum under the solution conditions usually encountered in cells. Although energy landscapes may be "rough", with many non-native local minima in which partially folded proteins can become trapped, the folding funnel hypothesis assumes that the native state is a deep free energy minimum with steep walls, corresponding to a single well-defined tertiary structure. The term was introduced by Ken A. Dill in a 1987 article discussing the stabilities of globular proteins.

In protein folding, a native contact is a contact between the side chains of two amino acids that are not neighboring in the amino acid sequence but are spatially close in the protein's native state tertiary structure. The fraction of native contacts reproduced in a particular structure is often used as a reaction coordinate for measuring the deviation from the native state of structures produced during molecular dynamics simulations or in benchmarks of protein structure prediction methods.

<span class="mw-page-title-main">Homology modeling</span> Method of protein structure prediction using other known proteins

Homology modeling, also known as comparative modeling of protein, refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental three-dimensional structure of a related homologous protein. Homology modeling relies on the identification of one or more known protein structures likely to resemble the structure of the query sequence, and on the production of an alignment that maps residues in the query sequence to residues in the template sequence. It has been seen that protein structures are more conserved than protein sequences amongst homologues, but sequences falling below a 20% sequence identity can have very different structure.

Downhill folding is a process in which a protein folds without encountering any significant macroscopic free energy barrier. It is a key prediction of the folding funnel hypothesis of the energy landscape theory of proteins.

In computational biology, de novo protein structure prediction refers to an algorithmic process by which protein tertiary structure is predicted from its amino acid primary sequence. The problem itself has occupied leading scientists for decades while still remaining unsolved. According to Science, the problem remains one of the top 125 outstanding issues in modern science. At present, some of the most successful methods have a reasonable probability of predicting the folds of small, single-domain proteins within 1.5 angstroms over the entire structure.

<span class="mw-page-title-main">Protein domain</span> Self-stable region of a proteins chain that folds independently from the rest

In molecular biology, a protein domain is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure. Many proteins consist of several domains, and a domain may appear in a variety of different proteins. Molecular evolution uses domains as building blocks and these may be recombined in different arrangements to create proteins with different functions. In general, domains vary in length from between about 50 amino acids up to 250 amino acids in length. The shortest domains, such as zinc fingers, are stabilized by metal ions or disulfide bridges. Domains often form functional units, such as the calcium-binding EF hand domain of calmodulin. Because they are independently stable, domains can be "swapped" by genetic engineering between one protein and another to make chimeric proteins.

Phyre and Phyre2 are free web-based services for protein structure prediction. Phyre is among the most popular methods for protein structure prediction having been cited over 1500 times. Like other remote homology recognition techniques, it is able to regularly generate reliable protein models when other widely used methods such as PSI-BLAST cannot. Phyre2 has been designed to ensure a user-friendly interface for users inexpert in protein structure prediction methods. Its development is funded by the Biotechnology and Biological Sciences Research Council.

<span class="mw-page-title-main">David T. Jones (scientist)</span> British bioinformatician

David Tudor Jones is a Professor of Bioinformatics, and Head of Bioinformatics Group in the University College London. He is also the director in Bloomsbury Center for Bioinformatics, which is a joint Research Centre between UCL and Birkbeck, University of London and which also provides bioinformatics training and support services to biomedical researchers. In 2013, he is a member of editorial boards for PLoS ONE, BioData Mining, Advanced Bioinformatics, Chemical Biology & Drug Design, and Protein: Structure, Function and Bioinformatics.

Molecular recognition features (MoRFs) are small intrinsically disordered regions in proteins that undergo a disorder-to-order transition upon binding to their partners. MoRFs are implicated in protein-protein interactions, which serve as the initial step in molecular recognition. MoRFs are disordered prior to binding to their partners, whereas they form a common 3D structure after interacting with their partners. As MoRF regions tend to resemble disordered proteins with some characteristics of ordered proteins, they can be classified as existing in an extended semi-disordered state.

Michael Joseph Ezra Sternberg is a professor at Imperial College London, where he is director of the Centre for Integrative Systems Biology and Bioinformatics and Head of the Structural bioinformatics Group.

<span class="mw-page-title-main">Protein tandem repeats</span>

An array of protein tandem repeats is defined as several adjacent copies having the same or similar sequence motifs. These periodic sequences are generated by internal duplications in both coding and non-coding genomic sequences. Repetitive units of protein tandem repeats are considerably diverse, ranging from the repetition of a single amino acid to domains of 100 or more residues.

AlphaFold is an artificial intelligence (AI) program developed by DeepMind, a subsidiary of Alphabet, which performs predictions of protein structure. The program is designed as a deep learning system.

References

  1. Plaxco, Kevin W; Simons, Kim T; Baker, David (1998-04-10). "Contact order, transition state placement and the refolding rates of single domain proteins11Edited by P. E. Wright". Journal of Molecular Biology. 277 (4): 985–994. doi:10.1006/jmbi.1998.1645. ISSN   0022-2836.
  2. 1 2 Plaxco, Kevin W; Simons, Kim T; Baker, David (April 1998). "Contact order, transition state placement and the refolding rates of single domain proteins". Journal of Molecular Biology. 277 (4): 985–994. doi:10.1006/jmbi.1998.1645. PMID   9545386.
  3. 1 2 3 Bonneau, Richard; Ruczinski, Ingo; Tsai, Jerry; Baker, David (August 2002). "Contact order and ab initio protein structure prediction". Protein Science. 11 (8): 1937–1944. doi:10.1110/ps.3790102. PMC   2373674 . PMID   12142448.
  4. Zuo, G; Wang, J; Wang, W (2006). "Folding with downhill behavior and low cooperativity of proteins". Proteins. 63 (1): 165–73. doi:10.1002/prot.20857. PMID   16416404. S2CID   11970404.
  5. Mount DM. (2004). Bioinformatics: Sequence and Genome Analysis 2nd ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
  6. Pandit, AD; Jha, A; Freed, KF; Sosnick, TR (2006). "Small proteins fold through transition states with native-like topologies". J Mol Biol. 361 (4): 755–70. doi:10.1016/j.jmb.2006.06.041. PMID   16876194.
  7. Paci, E; Lindorff-Larsen, K; Dobson, CM; Karplus, M; Vendruscolo, M (2005). "Transition state contact orders correlate with protein folding rates". J Mol Biol. 352 (3): 495–500. doi:10.1016/j.jmb.2005.06.081. PMID   16120445.
  8. Shi, Yi; Zhou, Jianjun; Arndt, David; Wishart, David S.; Lin, Guohui (2008). "Protein contact order prediction from primary sequences". BMC Bioinformatics. 9: 255. doi: 10.1186/1471-2105-9-255 . PMC   2440764 . PMID   18513429.