Contracted Bianchi identities Last updated April 17, 2025 Proof Start with the Bianchi identity [ 3]
R a b m n ; ℓ + R a b ℓ m ; n + R a b n ℓ ; m = 0. {\displaystyle R_{abmn;\ell }+R_{ab\ell m;n}+R_{abn\ell ;m}=0.} Contract both sides of the above equation with a pair of metric tensors :
g b n g a m ( R a b m n ; ℓ + R a b ℓ m ; n + R a b n ℓ ; m ) = 0 , {\displaystyle g^{bn}g^{am}(R_{abmn;\ell }+R_{ab\ell m;n}+R_{abn\ell ;m})=0,} g b n ( R m b m n ; ℓ − R m b m ℓ ; n + R m b n ℓ ; m ) = 0 , {\displaystyle g^{bn}(R^{m}{}_{bmn;\ell }-R^{m}{}_{bm\ell ;n}+R^{m}{}_{bn\ell ;m})=0,} g b n ( R b n ; ℓ − R b ℓ ; n − R b m n ℓ ; m ) = 0 , {\displaystyle g^{bn}(R_{bn;\ell }-R_{b\ell ;n}-R_{b}{}^{m}{}_{n\ell ;m})=0,} R n n ; ℓ − R n ℓ ; n − R n m n ℓ ; m = 0. {\displaystyle R^{n}{}_{n;\ell }-R^{n}{}_{\ell ;n}-R^{nm}{}_{n\ell ;m}=0.} The first term on the left contracts to yield a Ricci scalar, while the third term contracts to yield a mixed Ricci tensor,
R ; ℓ − R n ℓ ; n − R m ℓ ; m = 0. {\displaystyle R_{;\ell }-R^{n}{}_{\ell ;n}-R^{m}{}_{\ell ;m}=0.} The last two terms are the same (changing dummy index n to m ) and can be combined into a single term which shall be moved to the right,
R ; ℓ = 2 R m ℓ ; m , {\displaystyle R_{;\ell }=2R^{m}{}_{\ell ;m},} which is the same as
∇ m R m ℓ = 1 2 ∇ ℓ R . {\displaystyle \nabla _{m}R^{m}{}_{\ell }={1 \over 2}\nabla _{\ell }R.} Swapping the index labels l and m on the left side yields
∇ ℓ R ℓ m = 1 2 ∇ m R . {\displaystyle \nabla _{\ell }R^{\ell }{}_{m}={1 \over 2}\nabla _{m}R.} Notes ↑ Bianchi, Luigi (1902), "Sui simboli a quattro indici e sulla curvatura di Riemann" , Rend. Acc. Naz. Lincei (in Italian), 11 (5): 3– 7 ↑ Voss, A. (1880), "Zur Theorie der Transformation quadratischer Differentialausdrücke und der Krümmung höherer Mannigfaltigketien" , Mathematische Annalen , 16 (2): 129– 178, doi :10.1007/bf01446384 , S2CID 122828265 ↑ Synge J.L., Schild A. (1949). Tensor Calculus . pp. 87–89–90. References Lovelock, David; Hanno Rund (1989) [1975]. Tensors, Differential Forms, and Variational Principles . Dover. ISBN 978-0-486-65840-7 . Synge J.L., Schild A. (1949). Tensor Calculus . first Dover Publications 1978 edition. ISBN 978-0-486-63612-2 . J.R. Tyldesley (1975), An introduction to Tensor Analysis: For Engineers and Applied Scientists , Longman, ISBN 0-582-44355-5 D.C. Kay (1988), Tensor Calculus , Schaum’s Outlines, McGraw Hill (USA), ISBN 0-07-033484-6 T. Frankel (2012), The Geometry of Physics (3rd ed.), Cambridge University Press, ISBN 978-1107-602601
This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.