Cooperative coevolution

Last updated

Cooperative Coevolution (CC) in the field of biological evolution is an evolutionary computation method. It divides a large problem into subcomponents, and solves them independently in order to solve the large problem. [1]

Contents

The subcomponents are also called species. The subcomponents are implemented as subpopulations and the only interaction between subpopulations is in the cooperative evaluation of each individual of the subpopulations. The general CC framework is nature inspired where the individuals of a particular group of species mate amongst themselves, however, mating in between different species is not feasible. The cooperative evaluation of each individual in a subpopulation is done by concatenating the current individual with the best individuals from the rest of the subpopulations as described by M. Potter. [2]

The cooperative coevolution framework has been applied to real world problems such as pedestrian detection systems, [3] large-scale function optimization [4] and neural network training. [2] [5] It has also be further extended into another method, called Constructive cooperative coevolution.

Pseudocode

i := 0  for each subproblem Sdo     Initialise a subpopulation Pop0(S)     calculate fitness of each member in Pop0(S)  while termination criteria not satisfied  doi := i + 1     for each subproblem Sdo         select Popi(S) from Popi-1(S)         apply genetic operators to Popi(S)         calculate fitness of each member in Popi(S)

See also

Related Research Articles

Genetic algorithm Competitive algorithm for searching a problem space

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, automatically solve sudoku puzzles, hyperparameter optimization, etc.

Coevolution Two or more species influencing each others evolution

In biology, coevolution occurs when two or more species reciprocally affect each other's evolution through the process of natural selection. The term sometimes is used for two traits in the same species affecting each other's evolution, as well as gene-culture coevolution.

In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions. Evolution of the population then takes place after the repeated application of the above operators.

Evolutionary computation Trial and error problem solvers with a metaheuristic or stochastic optimization character

In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.

NeuroEvolution of Augmenting Topologies (NEAT) is a genetic algorithm (GA) for the generation of evolving artificial neural networks developed by Ken Stanley in 2002 while at The University of Texas at Austin. It alters both the weighting parameters and structures of networks, attempting to find a balance between the fitness of evolved solutions and their diversity. It is based on applying three key techniques: tracking genes with history markers to allow crossover among topologies, applying speciation to preserve innovations, and developing topologies incrementally from simple initial structures ("complexifying").

Ant colony optimization algorithms

In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. Artificial ants stand for multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search algorithms have become a method of choice for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing.

No free lunch in search and optimization Solution cost, averaged over all problems in a class, is the same for any solution method

In computational complexity and optimization the no free lunch theorem is a result that states that for certain types of mathematical problems, the computational cost of finding a solution, averaged over all problems in the class, is the same for any solution method. No solution therefore offers a "short cut". This is under the assumption that the search space is a probability density function. It does not apply to the case where the search space has underlying structure that can be exploited more efficiently than random search or even has closed-form solutions that can be determined without search at all. For such probabilistic assumptions, the outputs of all procedures solving a particular type of problem are statistically identical. A colourful way of describing such a circumstance, introduced by David Wolpert and William G. Macready in connection with the problems of search and optimization, is to say that there is no free lunch. Wolpert had previously derived no free lunch theorems for machine learning. Before Wolpert's article was published, Cullen Schaffer independently proved a restricted version of one of Wolpert's theorems and used it to critique the current state of machine learning research on the problem of induction.

In genetic algorithms, the term of premature convergence means that a population for an optimization problem converged too early, resulting in being suboptimal. In this context, the parental solutions, through the aid of genetic operators, are not able to generate offspring that are superior to, or outperform, their parents. Premature convergence is a common problem found in genetic algorithms, as it leads to a loss, or convergence of, a large number of alleles, subsequently making it very difficult to search for a specific gene in which the alleles were present. An allele is considered lost if, in a population, a gene is present, where all individuals are sharing the same value for that particular gene. An allele is, as defined by De Jong, considered to be a converged allele, when 95% of a population share the same value for a certain gene.

The expression computational intelligence (CI) usually refers to the ability of a computer to learn a specific task from data or experimental observation. Even though it is commonly considered a synonym of soft computing, there is still no commonly accepted definition of computational intelligence.

A memetic algorithm (MA) in computer science and operations research, is an extension of the traditional genetic algorithm. It may provide a sufficiently good solution to an optimization problem. It uses a local search technique to reduce the likelihood of premature convergence.

ECJ is a freeware evolutionary computation research system written in Java. It is a framework that supports a variety of evolutionary computation techniques, such as genetic algorithms, genetic programming, evolution strategies, coevolution, particle swarm optimization, and differential evolution. The framework models iterative evolutionary processes using a series of pipelines arranged to connect one or more subpopulations of individuals with selection, breeding (such as crossover, and mutation operators that produce new individuals. The framework is open source and is distributed under the Academic Free License. ECJ was created by Sean Luke, a computer science professor at George Mason University, and is maintained by Sean Luke and a variety of contributors.

Parallel metaheuristic is a class of techniques that are capable of reducing both the numerical effort and the run time of a metaheuristic. To this end, concepts and technologies from the field of parallelism in computer science are used to enhance and even completely modify the behavior of existing metaheuristics. Just as it exists a long list of metaheuristics like evolutionary algorithms, particle swarm, ant colony optimization, simulated annealing, etc. it also exists a large set of different techniques strongly or loosely based in these ones, whose behavior encompasses the multiple parallel execution of algorithm components that cooperate in some way to solve a problem on a given parallel hardware platform.

A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.

Fitness approximation aims to approximate the objective or fitness functions in evolutionary optimization by building up machine learning models based on data collected from numerical simulations or physical experiments. The machine learning models for fitness approximation are also known as meta-models or surrogates, and evolutionary optimization based on approximated fitness evaluations are also known as surrogate-assisted evolutionary approximation. Fitness approximation in evolutionary optimization can be seen as a sub-area of data-driven evolutionary optimization.

In applied mathematics, multimodal optimization deals with optimization tasks that involve finding all or most of the multiple solutions of a problem, as opposed to a single best solution. Evolutionary multimodal optimization is a branch of evolutionary computation, which is closely related to machine learning. Wong provides a short survey, wherein the chapter of Shir and the book of Preuss cover the topic in more detail.

MCACEA is a general framework that uses a single evolutionary algorithm (EA) per agent sharing their optimal solutions to coordinate the evolutions of the EAs populations using cooperation objectives. This framework can be used to optimize some characteristics of multiple cooperating agents in mathematical optimization problems. More specifically, due to its nature in which both individual and cooperation objectives are optimize, MCACEA is used in multi-objective optimization problems.

The constructive cooperative coevolutionary algorithm (also called C3) is a global optimisation algorithm in artificial intelligence based on the multi-start architecture of the greedy randomized adaptive search procedure (GRASP). It incorporates the existing cooperative coevolutionary algorithm (CC). The considered problem is decomposed into subproblems. These subproblems are optimised separately while exchanging information in order to solve the complete problem. An optimisation algorithm, usually but not necessarily an evolutionary algorithm, is embedded in C3 for optimising those subproblems. The nature of the embedded optimisation algorithm determines whether C3's behaviour is deterministic or stochastic.

Multi-task optimization is a paradigm in the optimization literature that focuses on solving multiple self-contained tasks simultaneously. The paradigm has been inspired by the well-established concepts of transfer learning and multi-task learning in predictive analytics.

References

  1. M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary approach to function optimization,” in PPSN III: Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature. London, UK:Springer-Verlag, 1994, pp. 249–257.
  2. 1 2 Mitchell A. Potter, Kenneth A. De Jong, Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents, Evolutionary Computation, v.8 n.1, 2000, p.1-29.
  3. Cao, X., Qiao, H. and Keane, J., A low-cost pedestrian-detection system with a single optical camera. IEEE Transactions on Intelligent Transportation Systems. v9 i1. 58-67.
  4. Yang, Z., Tang, K., and Yao, X. 2008. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178, 15 (Aug. 2008), 2985-2999
  5. García-Pedrajas, N., Hervás-Martínez, C. and Muñoz Pérez, J., COVNET: a cooperative coevolutionary model for evolving artificial neural networks. IEEE Transactions on Neural Networks. v14 i3. 575-596.