Coronin

Last updated

Coronin is an actin binding protein which also interacts with microtubules and in some cell types is associated with phagocytosis. [1] [2] [3] Coronin proteins are expressed in a large number of eukaryotic organisms from yeast to humans.

Contents

Discovery

Initially, a 55 kDa protein was isolated from the actomyosin complex of Dictyostelium discoideum , which was later shown to bind actin in vitro. [4] This actin binding protein was named coronin after its strong immunolocalisation in the actin rich crown like extension of the cell cortex in D. discoideum. Initially this protein was admitted into club of actin binding proteins with least enthusiasm, as the primary structure did not match any other ABPs. But null mutation of coronin in D. discoideum resulted in impaired cytokinesis, and many actin mediated processes like endocytosis, cell motility etc. Later on, the protein was identified in many eukaryotic cells. [5]

Structure

Crystal structure of mouse coronin-1. PBB Protein CORO1A image.jpg
Crystal structure of mouse coronin-1.

Coronin belongs to the WD-repeat containing proteins, which form a beta propeller tertiary structure. The crystal structure of coronin 1A (see figure to the right) containing major part of the protein was solved in 2006. [6]

The WD-repeat is a structural motif comprising approximately 40 amino acids usually ending with the amino acid sequence tryptophan (W) – aspartic acid (D) and hence the name WD. [7]

WD-40-domain –repeat proteins are defined by the presence of at least four WD repeats located centrally in the protein. These domains were discovered in 1986 and are characterized by a partial conserved domain of 40-60 amino acids, starting with GH dipeptide 11-24 residue away from the N-terminus and ending with a tryptophane-aspartic acid (WD) dipeptide at the C-terminus. The WD domain has no intrinsic catalytic activity and is thought to serve as a stable platform for simultaneous interaction. WD repeat proteins have diverse cellular functions. They play a central role in physiological processes like signal transduction, transcriptional regulation, cytoskeleton remodeling, and regulation of vesicle trafficking.

Coronin homologues both in vertebrates and invertebrates forms a subfamily among WD repeat proteins. Coronin contains 3-5 WD clustered repeats forming the central core domain. Apart from the core domain, almost all coronins have a short conserved N-terminal motif and coiled coil motif of 50 amino acids at the C-terminus. The N-terminal region contains 12 basic amino acids which can be taken as signature as it is present in only coronin proteins. These basic residues have been shown to be involved in actin binding. Furthermore, each coronin contains a unique divergent region between the WD domain and C-terminal coiled coil region. The number of amino acids in this region varies greatly. The unique region of Dictyostelium has 22 amino acids whereas mammalian coronins contains about 50 amino acids. The coronin-like proteins from budding yeast Crn1 and one of the coronins in Caenorhabditiselegans has a much longer unique region i.e. 194 vs 144aa. The unique region of yeast coronin shows homologies with microtubule binding domains of the MAPs and yeast coronin binds both actin and microtubule and serve as bridge between them.

A second region of variability exists in the fourth β-strand of the third WD repeats.

Function

Yeast coronin Crn1 [8] and Drosophila Dpod1 were found to crosslink the actin and microtubule cytoskeleton. Caenorhabditiselegans POD-1 and Drosophila coronin homologue regulate the actin cytoskeleton and are involved in vesicular trafficking.

Seven different isoforms of coronin have been reported in mammals. The most well-studied isoforms are coronin 1 (Coronin 1A) and coronin 1B. Coronin 1 exerted an inhibitory effect on cellular steady-state F-actin formation via an Arp2/3-dependent mechanism. Whereas coronin 1 was required for chemokine-mediated migration, it was dispensable for T cell antigen receptor functions in T cells. [9] Coronin 1B is required for efficient cell protrusion and migration. [10] [11] Coronin 1B inhibits the Arp2/3 complex activity by replacing it at the branched actin structure. [12] Mammalian Coronin-7 does not interact with actin nor does it execute any actin mediated processes, but rather participates in Golgi trafficking.

Although coronin is present in almost all eukaryotic organisms and has different functions, these proteins have all been shown to bind F-actin and localize in the dynamic F-actin rich area of cells. Coronin binds to ATP/ADP-Pi containing F-actin with much greater affinity compared to ADP containing F-actin, which might explain their unique cellular localization. [13]

Classification

N-terminus signature region is reduced to 5aa and appears in front of each WD-repeat core domain (e.g., CRN7, POD-1)

Family members

Human proteins which are members of the coronin family include:

Related Research Articles

<span class="mw-page-title-main">Intermediate filament</span> Cytoskeletal structure

Intermediate filaments (IFs) are cytoskeletal structural components found in the cells of vertebrates, and many invertebrates. Homologues of the IF protein have been noted in an invertebrate, the cephalochordate Branchiostoma.

<span class="mw-page-title-main">Wiskott–Aldrich syndrome protein</span> Mammalian protein found in humans

The Wiskott–Aldrich Syndrome protein (WASp) is a 502-amino acid protein expressed in cells of the hematopoietic system that in humans is encoded by the WAS gene. In the inactive state, WASp exists in an autoinhibited conformation with sequences near its C-terminus binding to a region near its N-terminus. Its activation is dependent upon CDC42 and PIP2 acting to disrupt this interaction, causing the WASp protein to 'open'. This exposes a domain near the WASp C-terminus that binds to and activates the Arp2/3 complex. Activated Arp2/3 nucleates new F-actin.

<span class="mw-page-title-main">Stathmin</span> Protein in Eukaryotes

Stathmin, also known as metablastin and oncoprotein 18 is a protein that in humans is encoded by the STMN1 gene.

<span class="mw-page-title-main">Cortactin</span> Protein found in humans

Cortactin is a monomeric protein located in the cytoplasm of cells that can be activated by external stimuli to promote polymerization and rearrangement of the actin cytoskeleton, especially the actin cortex around the cellular periphery. It is present in all cell types. When activated, it will recruit Arp2/3 complex proteins to existing actin microfilaments, facilitating and stabilizing nucleation sites for actin branching. Cortactin is important in promoting lamellipodia formation, invadopodia formation, cell migration, and endocytosis.

<span class="mw-page-title-main">FGD1</span> Protein-coding gene in the species Homo sapiens

FYVE, RhoGEF and PH domain-containing protein 1 (FGD1) also known as faciogenital dysplasia 1 protein (FGDY), zinc finger FYVE domain-containing protein 3 (ZFYVE3), or Rho/Rac guanine nucleotide exchange factor FGD1 is a protein that in humans is encoded by the FGD1 gene that lies on the X chromosome. Orthologs of the FGD1 gene are found in dog, cow, mouse, rat, and zebrafish, and also budding yeast and C. elegans. It is a member of the FYVE, RhoGEF and PH domain containing family.

<span class="mw-page-title-main">Formins</span>

Formins (formin homology proteins) are a group of proteins that are involved in the polymerization of actin and associate with the fast-growing end (barbed end) of actin filaments. Most formins are Rho-GTPase effector proteins. Formins regulate the actin and microtubule cytoskeleton and are involved in various cellular functions such as cell polarity, cytokinesis, cell migration and SRF transcriptional activity. Formins are multidomain proteins that interact with diverse signalling molecules and cytoskeletal proteins, although some formins have been assigned functions within the nucleus.

<span class="mw-page-title-main">TPM1</span> Protein-coding gene in the species Homo sapiens

Tropomyosin alpha-1 chain is a protein that in humans is encoded by the TPM1 gene. This gene is a member of the tropomyosin (Tm) family of highly conserved, widely distributed actin-binding proteins involved in the contractile system of striated and smooth muscles and the cytoskeleton of non-muscle cells.

<span class="mw-page-title-main">ACTR1A</span> Protein-coding gene in the species Homo sapiens

Alpha-centractin (yeast) or ARP1 is a protein that in humans is encoded by the ACTR1A gene.

<span class="mw-page-title-main">MACF1</span> Protein-coding gene in the species Homo sapiens

Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5 is a protein that in humans is encoded by the MACF1 gene.

<span class="mw-page-title-main">CORO1A</span> Protein-coding gene in the species Homo sapiens

Coronin-1A is a protein that in humans is encoded by the CORO1A gene. It has been implicated in both T-cell mediated immunity and mitochondrial apoptosis. In a recent genome-wide longevity study, its expression levels were found to be negatively associated both with age at the time of blood sample and the survival time after blood draw.

<span class="mw-page-title-main">CORO1C</span> Protein-coding gene in humans

Coronin-1C is a protein that in humans is encoded by the CORO1C gene.

<span class="mw-page-title-main">ERM protein family</span> Protein family

The ERM protein family consists of three closely related proteins, ezrin, radixin and moesin. The three paralogs, ezrin, radixin and moesin, are present in vertebrates, whereas other species have only one ERM gene. Therefore, in vertebrates these paralogs likely arose by gene duplication.

Coronin, actin binding protein, 1B also known as CORO1B is a protein which in humans is encoded by the CORO1B gene. Members of the coronin family, such as CORO1B, are WD repeat-containing actin-binding proteins that regulate cell motility.

<span class="mw-page-title-main">Cordon-bleu protein</span> Protein found in humans

Protein cordon-bleu is a protein that in humans is encoded by the COBL gene.

<span class="mw-page-title-main">Actin assembly-inducing protein</span>

The Actin assembly-inducing protein (ActA) is a protein encoded and used by Listeria monocytogenes to propel itself through a mammalian host cell. ActA is a bacterial surface protein comprising a membrane-spanning region. In a mammalian cell the bacterial ActA interacts with the Arp2/3 complex and actin monomers to induce actin polymerization on the bacterial surface generating an actin comet tail. The gene encoding ActA is named actA or prtB.

<span class="mw-page-title-main">MDia1</span> Protein

mDia1 is a member of the protein family called the formins and is a Rho effector. It is the mouse version of the diaphanous homolog 1 of Drosophila. mDia1 localizes to cells' mitotic spindle and midbody, plays a role in stress fiber and filopodia formation, phagocytosis, activation of serum response factor, formation of adherens junctions, and it can act as a transcription factor. mDia1 accelerates actin nucleation and elongation by interacting with barbed ends of actin filaments. The gene encoding mDia1 is located on Chromosome 18 of Mus musculus and named Diap1.

<span class="mw-page-title-main">Cyclase-associated protein family</span>

In molecular biology, the cyclase-associated protein family (CAP) is a family of highly conserved actin-binding proteins present in a wide range of organisms including yeast, flies, plants, and mammals. CAPs are multifunctional proteins that contain several structural domains. CAP is involved in species-specific signalling pathways. In Drosophila, CAP functions in Hedgehog-mediated eye development and in establishing oocyte polarity. In Dictyostelium discoideum, CAP is involved in microfilament reorganisation near the plasma membrane in a PIP2-regulated manner and is required to perpetuate the cAMP relay signal to organise fruitbody formation. In plants, CAP is involved in plant signalling pathways required for co-ordinated organ expansion. In yeast, CAP is involved in adenylate cyclase activation, as well as in vesicle trafficking and endocytosis. In both yeast and mammals, CAPs appear to be involved in recycling G-actin monomers from ADF/cofilins for subsequent rounds of filament assembly. In mammals, there are two different CAPs that share 64% amino acid identity.

<span class="mw-page-title-main">CORO2A</span> Protein-coding gene in the species Homo sapiens

Coronin, actin binding protein, 2A is a protein that in humans is encoded by the CORO2A gene.

<span class="mw-page-title-main">Microtubule plus-end tracking protein</span>

Microtubule plus-end/positive-end tracking proteins or +TIPs are a type of microtubule associated protein (MAP) which accumulate at the plus ends of microtubules. +TIPs are arranged in diverse groups which are classified based on their structural components; however, all classifications are distinguished by their specific accumulation at the plus end of microtubules and their ability to maintain interactions between themselves and other +TIPs regardless of type. +TIPs can be either membrane bound or cytoplasmic, depending on the type of +TIPs. Most +TIPs track the ends of extending microtubules in a non-autonomous manner.

References

  1. Uetrecht AC, Bear JE (June 2006). "Coronins: the return of the crown". Trends Cell Biol. 16 (8): 421–6. doi:10.1016/j.tcb.2006.06.002. PMID   16806932.
  2. de Hostos EL (September 1999). "The coronin family of actin-associated proteins". Trends Cell Biol. 9 (9): 345–50. doi:10.1016/S0962-8924(99)01620-7. PMID   10461187.
  3. Rybakin V, Clemen CS (June 2005). "Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking". BioEssays. 27 (6): 625–32. doi:10.1002/bies.20235. PMID   15892111. S2CID   1164259.
  4. de Hostos EL, Bradtke B, Lottspeich F, Guggenheim R, Gerisch G (December 1991). "Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits". EMBO J. 10 (13): 4097–104. doi:10.1002/j.1460-2075.1991.tb04986.x. PMC   453159 . PMID   1661669.
  5. de Hostos EL (2008). "A Brief History of the Coronin Family". The Coronin Family of Proteins. Subcellular Biochemistry. Vol. 48. pp. 31–40. doi:10.1007/978-0-387-09595-0_4. ISBN   978-0-387-09594-3. PMID   18925369.{{cite book}}: |journal= ignored (help)
  6. 1 2 PDB: 2AQ5 ; Appleton BA, Wu P, Wiesmann C (January 2006). "The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes". Structure. 14 (1): 87–96. doi: 10.1016/j.str.2005.09.013 . PMID   16407068.
  7. Li D, Roberts R (December 2001). "WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases". Cell. Mol. Life Sci. 58 (14): 2085–97. doi:10.1007/PL00000838. PMID   11814058. S2CID   20646422.
  8. Humphries CL, Balcer HI, D'Agostino JL, Winsor B, Drubin DG, Barnes G, Andrews BJ, Goode BL (December 2002). "Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin". J. Cell Biol. 159 (6): 993–1004. doi:10.1083/jcb.200206113. PMC   2173993 . PMID   12499356.
  9. Föger N, Rangell L, Danilenko DM, Chan AC (August 2006). "Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis". Science. 313 (5788): 839–42. Bibcode:2006Sci...313..839F. doi:10.1126/science.1130563. PMID   16902139. S2CID   39580628.
  10. Cai L, Marshall TW, Uetrecht AC, Schafer DA, Bear JE (May 2007). "Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge". Cell. 128 (5): 915–29. doi:10.1016/j.cell.2007.01.031. PMC   2630706 . PMID   17350576.
  11. Cai L, Holoweckyj N, Schaller MD, Bear JE (September 2005). "Phosphorylation of coronin 1B by protein kinase C regulates interaction with Arp2/3 and cell motility". J Biol Chem. 280 (36): 31913–23. doi: 10.1074/jbc.M504146200 . PMID   16027158.
  12. Cai L, Makhov AM, Schafer DA, Bear JE (September 2008). "Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia". Cell. 134 (5): 828–42. doi:10.1016/j.cell.2008.06.054. PMC   2570342 . PMID   18775315.
  13. Cai L, Makhov AM, Bear JE (May 2007). "F-actin binding is essential for coronin 1B function in vivo". J Cell Sci. 120 (10): 1779–90. doi: 10.1242/jcs.007641 . PMID   17456547.

Further reading