Counterforce

Last updated

In nuclear strategy, a counterforce target is one that has a military value, such as a launch silo for intercontinental ballistic missiles, an airbase at which nuclear-armed bombers are stationed, a homeport for ballistic missile submarines, or a command and control installation. [1]

Contents

The intent of a counterforce strategy (attacking counterforce targets with nuclear weapons) is to conduct a preemptive nuclear strike which has as its aim to disarm an adversary by destroying its nuclear weapons before they can be launched. [2] That would minimize the impact of a retaliatory second strike.[ citation needed ] However, counterforce attacks are possible in a second strike as well, especially with weapons like UGM-133 Trident II.[ clarification needed ] [3] A counterforce target is distinguished from a countervalue target, which includes an adversary's population, knowledge, economic, or political resources. [1] In short, a counterforce strike is directed against an adversary's military capabilities, while a countervalue strike is directed against an adversary's civilian-centered institutions.

A closely related tactic is the decapitation strike, which destroys an enemy's nuclear command and control facilities and similarly has a goal to eliminate or reduce the enemy's ability to launch a second strike. Counterforce targets are almost always near to civilian population centers, which would not be spared in the event of a counterforce strike.[ citation needed ]

Theory

In nuclear warfare, enemy targets are divided into two types: counterforce and countervalue. A counterforce target is an element of the military infrastructure, usually either specific weapons or the bases that support them. A counterforce strike is an attack that targets those elements but leaving the civilian infrastructure, the countervalue targets, as undamaged as possible. Countervalue refers to the targeting of an opponent's cities and civilian populations.

Counterforce weapons may be seen to provide more credible deterrence in future conflict by providing options for leaders. [4] One option considered by the Soviet Union in the 1970s was basing missiles in orbit.

Cold War

Counterforce is a type of attack which was originally proposed during the Cold War.

Because of the low accuracy (circular error probable) of early generation intercontinental ballistic missiles (and especially submarine-launched ballistic missiles), counterforce strikes were initially possible only against very large, undefended targets like bomber airfields and naval bases. Later-generation missiles, with much-improved accuracy, made possible counterforce attacks against the opponent's hardened military facilities, like missile silos and command and control centers.

Both sides in the Cold War took steps to protect at least some of their nuclear forces from counterforce attacks. At one point, the US kept B-52 Stratofortress bombers permanently in flight so that they would remain operational after any counterforce strike. Other bombers were kept ready for launch on short notice, allowing them to escape their bases before intercontinental ballistic missiles, launched from land, could destroy them. The deployment of nuclear weapons on ballistic missile submarines changed the equation considerably, as submarines launching from positions off the coast would likely destroy airfields before bombers could launch, which would reduce their ability to survive an attack. Submarines themselves, however, are largely immune from counterforce strikes unless they are moored at their naval bases, and both sides fielded many such weapons during the Cold War.

US Department of Defense map of the Soviet Strategic Rocket Forces ICBM silos and bases in the 1980s. Soviet Military Power ICBM map.gif
US Department of Defense map of the Soviet Strategic Rocket Forces ICBM silos and bases in the 1980s.

A counterforce exchange was one scenario mooted for a possible limited nuclear war. The concept was that one side might launch a counterforce strike against the other; the victim would recognize the limited nature of the attack and respond in kind. That would leave the military capability of both sides largely destroyed. The war might then come to an end because both sides would recognize that any further action would lead to attacks on the civilian population from the remaining nuclear forces, a countervalue strike.

Critics of that idea claimed that since even a counterforce strike would kill millions of civilians since some strategic military facilities like bomber airbases were often located near large cities. That would make it unlikely that escalation to a full-scale countervalue war could be prevented.

MIRVed land-based ICBMs are considered destabilizing because they tend to put a premium on striking first. For example, suppose that each side has 100 missiles, with five warheads each, and each side has a 95 percent chance of neutralizing the opponent's missiles in their silos by firing two warheads at each silo. In that case, the side that strikes first can reduce the enemy ICBM force from 100 missiles to about five by firing 40 missiles with 200 warheads and keeping the remaining 60 missiles in reserve. For such an attack to be successful, the warheads would have to strike their targets before the enemy launched a counterattack (see second strike and launch on warning). This type of weapon was therefore banned under the START II agreement, which was not ratified and therefore ineffectual.

Counterforce disarming first-strike weapons

See also

Related Research Articles

<span class="mw-page-title-main">Intercontinental ballistic missile</span> Ballistic missile with a range of more than 5,500 kilometres

An intercontinental ballistic missile (ICBM) is a ballistic missile with a range greater than 5,500 kilometres (3,400 mi), primarily designed for nuclear weapons delivery. Conventional, chemical, and biological weapons can also be delivered with varying effectiveness, but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicle (MIRVs), allowing a single missile to carry several warheads, each of which can strike a different target. The United States, Russia, China, France, India, the United Kingdom, Israel, and North Korea are the only countries known to have operational ICBMs. Pakistan is the only nuclear-armed state that does not possess ICBMs.

<span class="mw-page-title-main">First strike (nuclear strategy)</span> Preemptive attack using nuclear weapons

In nuclear strategy, a first strike or preemptive strike is a preemptive surprise attack employing overwhelming force. First strike capability is a country's ability to defeat another nuclear power by destroying its arsenal to the point where the attacking country can survive the weakened retaliation while the opposing side is left unable to continue war. The preferred methodology is to attack the opponent's strategic nuclear weapon facilities, command and control sites, and storage depots first. The strategy is called counterforce.

<span class="mw-page-title-main">Mutual assured destruction</span> Doctrine of military strategy

Mutual assured destruction (MAD) is a doctrine of military strategy and national security policy which posits that a full-scale use of nuclear weapons by an attacker on a nuclear-armed defender with second-strike capabilities would result in the complete annihilation of both the attacker and the defender. It is based on the theory of rational deterrence, which holds that the threat of using strong weapons against the enemy prevents the enemy's use of those same weapons. The strategy is a form of Nash equilibrium in which, once armed, neither side has any incentive to initiate a conflict or to disarm.

<span class="mw-page-title-main">LGM-30 Minuteman</span> American ICBM, in service

The LGM-30 Minuteman is an American land-based intercontinental ballistic missile (ICBM) in service with the Air Force Global Strike Command. As of 2024, the LGM-30G is the only land-based ICBM in service in the United States and represents the land leg of the U.S. nuclear triad, along with the Trident II submarine-launched ballistic missile (SLBM) and nuclear weapons carried by long-range strategic bombers.

<span class="mw-page-title-main">Nuclear utilization target selection</span>

Nuclear utilization target selection (NUTS) is a hypothesis regarding the use of nuclear weapons often contrasted with mutually assured destruction (MAD). NUTS theory at its most basic level asserts that it is possible for a limited nuclear exchange to occur and that nuclear weapons are simply one more rung on the ladder of escalation pioneered by Herman Kahn. This leads to a number of other conclusions regarding the potential uses of and responses to nuclear weapons.

<span class="mw-page-title-main">Multiple independently targetable reentry vehicle</span> Ballistic missile payload containing multiple warheads which are independently targetable

A multiple independently targetable reentry vehicle (MIRV) is an exoatmospheric ballistic missile payload containing several warheads, each capable of being aimed to hit a different target. The concept is almost invariably associated with intercontinental ballistic missiles carrying thermonuclear warheads, even if not strictly being limited to them. An intermediate case is the multiple reentry vehicle (MRV) missile which carries several warheads which are dispersed but not individually aimed. All nuclear-weapon states except Pakistan and North Korea are currently confirmed to have deployed MIRV missile systems. Israel is suspected to possess or be in the process of developing MIRVs.

<span class="mw-page-title-main">LGM-118 Peacekeeper</span> Intercontinental ballistic missile

The LGM-118 Peacekeeper, originally known as the MX for "Missile, Experimental", was a MIRV-capable intercontinental ballistic missile (ICBM) produced and deployed by the United States from 1985 to 2005. The missile could carry up to twelve Mark 21 reentry vehicles, each armed with a 300-kiloton W87 warhead. Initial plans called for building and deploying 100 MX ICBMs, but budgetary concerns limited the final procurement; only 50 entered service. Disarmament treaties signed after the Peacekeeper's development led to its withdrawal from service in 2005.

<span class="mw-page-title-main">START II</span> 1993 nuclear arms reduction treaty between the US and Russia

START II was a bilateral treaty between the United States and Russia on the Reduction and Limitation of Strategic Offensive Arms. It was signed by US President George H. W. Bush and Russian President Boris Yeltsin on 3 January 1993, banning the use of multiple independently targetable re-entry vehicles (MIRVs) on intercontinental ballistic missiles (ICBMs). Hence, it is often cited as the De-MIRV-ing Agreement.

<span class="mw-page-title-main">UGM-133 Trident II</span> US/UK SLBM

The UGM-133A Trident II, or Trident D5 is a submarine-launched ballistic missile (SLBM), built by Lockheed Martin Space in Sunnyvale, California, and deployed with the United States and Royal Navy. It was first deployed in March 1990, and remains in service. The Trident II Strategic Weapons System is an improved SLBM with greater accuracy, payload, and range than the earlier Trident C-4. It is a key element of the U.S. strategic nuclear triad and strengthens U.S. strategic deterrence. The Trident II is considered to be a durable sea-based system capable of engaging many targets. It has payload flexibility that can accommodate various treaty requirements, such as New START. The Trident II's increased payload allows nuclear deterrence to be accomplished with fewer submarines, and its high accuracy—approaching that of land-based missiles—enables it to be used as a first strike weapon.

<span class="mw-page-title-main">R-36 (missile)</span> Type of intercontinental ballistic missile designed by the Soviet Union

The R-36 is a family of intercontinental ballistic missiles (ICBMs) and space launch vehicles (Tsyklon) designed by the Soviet Union during the Cold War. The original R-36 was deployed under the GRAU index 8K67 and was given the NATO reporting name SS-9 Scarp. It was able to carry three warheads and was the first Soviet MRV missile. The later version, the R-36M, also known as RS20, was produced under the GRAU designations 15A14 and 15A18 and was given the NATO reporting name SS-18 Satan. This missile was viewed by certain United States analysts as giving the Soviet Union first strike advantage over the U.S., particularly because of its rapid silo-reload ability, very heavy throw weight and extremely large number of re-entry vehicles. Some versions of the R-36M were deployed with 10 warheads and up to 40 penetration aids and the missile's high throw-weight made it theoretically capable of carrying more warheads or penetration aids. Contemporary U.S. missiles, such as the Minuteman III, carried up to three warheads at most.

<span class="mw-page-title-main">RT-2PM Topol</span> Intercontinental ballistic missile

The RT-2PM Topol was a mobile intercontinental ballistic missile designed in the Soviet Union and in service with Russia's Strategic Missile Troops. As of 2014, Russia planned to replace all RT-2PM ICBMs with versions of Topol-M. In December 2023, the last Topol regiment was taken off combat duty.

<span class="mw-page-title-main">Second strike</span> Response to a powerful first nuclear strike

In nuclear strategy, a retaliatory strike or second-strike capability is a country's assured ability to respond to a nuclear attack with powerful nuclear retaliation against the attacker. To have such an ability is considered vital in nuclear deterrence, as otherwise the other side might attempt to try to win a nuclear war in one massive first strike against its opponent's own nuclear forces.

<span class="mw-page-title-main">People's Liberation Army Rocket Force</span> Strategic and tactical missile force of the Chinese Peoples Liberation Army

The People's Liberation Army Rocket Force, formerly the Second Artillery Corps, is the strategic and tactical missile force of the People's Republic of China. The PLARF is the 4th branch of the People's Liberation Army (PLA) and controls China's arsenal of land-based ballistic, hypersonic, cruise missiles—both nuclear and conventional. The armed service branch was established on 1 July 1966 and made its first public appearance on 1 October 1984. The headquarters for operations is located at Qinghe, Beijing. The PLARF is under the direct command of the Chinese Communist Party's Central Military Commission (CMC).

<span class="mw-page-title-main">Nuclear weapons delivery</span> Type of explosive arms

Nuclear weapons delivery is the technology and systems used to place a nuclear weapon at the position of detonation, on or near its target. Several methods have been developed to carry out this task.

<span class="mw-page-title-main">Launch on warning</span> Nuclear strategy

Launch on warning (LOW), or fire on warning, is a strategy of nuclear weapon retaliation where a retaliatory strike is launched upon warning of enemy nuclear attack and while its missiles are still in the air, before detonation occurs. It gained recognition during the Cold War between the Soviet Union and the United States. With the invention of intercontinental ballistic missiles (ICBMs), launch on warning became an integral part of mutually-assured destruction (MAD) theory. US land-based missiles can reportedly be launched within 5 minutes of a presidential decision to do so and submarine-based missiles within 15 minutes.

<span class="mw-page-title-main">MGM-134 Midgetman</span> Intercontinental ballistic missile

The MGM-134A Midgetman, also known as the Small Intercontinental Ballistic Missile, was an intercontinental ballistic missile developed by the United States Air Force. The system was mobile and could be set up rapidly, allowing it to move to a new firing location after learning of an enemy missile launch. To attack the weapon, the enemy would have to blanket the area around its last known location with multiple warheads, using up a large percentage of their force for limited gains and no guarantee that all of the missiles would be destroyed. In such a scenario, the U.S. would retain enough of their forces for a successful counterstrike, thereby maintaining deterrence.

<span class="mw-page-title-main">Nuclear triad</span> Set of three types of nuclear-strike weapons

A nuclear triad is a three-pronged military force structure of land-based intercontinental ballistic missiles (ICBMs), submarine-launched ballistic missiles (SLBMs), and strategic bombers with nuclear bombs and missiles. Countries build nuclear triads to eliminate an enemy's ability to destroy a nation's nuclear forces in a first-strike attack, which preserves their own ability to launch a second strike and therefore increases their nuclear deterrence.

<span class="mw-page-title-main">Strategic nuclear weapon</span> Nuclear weapons used on strategic targets outside of battlefields

A strategic nuclear weapon (SNW) refers to a nuclear weapon that is designed to be used on targets often in settled territory far from the battlefield as part of a strategic plan, such as military bases, military command centers, arms industries, transportation, economic, and energy infrastructure, and countervalue targets such areas such as cities and towns. It is in contrast to a tactical nuclear weapon, which is designed for use in battle as part of an attack with and often near friendly conventional forces, possibly on contested friendly territory. As of 2024, strategic nuclear weapons have been used twice in the 1945 United States bombings of Hiroshima and Nagasaki.

Prompt-launch status and delayed launch status are generic classifications of combat readiness applied to describe nuclear-armed missiles.

References

  1. 1 2 Martel, William C; Savage, Paul L (1986). Strategic Nuclear War: What the Superpowers Target and Why. New York: Greenwood Press.
  2. Lieber, Keir A.; Press, Daryl G. (2017). "The New Era of Counterforce: Technological Change and the Future of Nuclear Deterrence". International Security. 41 (4): 9–49. doi:10.1162/ISEC_a_00273. ISSN   0162-2889. S2CID   53118210.
  3. "Trident II (D5) Missile".
  4. Lieber, Keir A; Press, Daryl G (November–December 2009). "The Nukes We Need". Foreign Affairs . 88 (6): 39–51.
  5. Bureau of Arms Control, Verification and Compliance (July 1, 2020). "New START Treaty Aggregate Numbers of Strategic Offensive Arms" (PDF). US State Department. Retrieved June 18, 2021.