The coupling coefficient of resonators is a dimensionless value that characterizes interaction of two resonators. Coupling coefficients are used in resonator filter theory. Resonators may be both electromagnetic and acoustic. Coupling coefficients together with resonant frequencies and external quality factors of resonators are the generalized parameters of filters. In order to adjust the frequency response of the filter it is sufficient to optimize only these generalized parameters.
This term was first introduced in filter theory by M Dishal. [1] [ non-primary source needed ] In some degree it is an analog of coupling coefficient of coupled inductors. Meaning of this term has been improved many times with progress in theory of coupled resonators and filters. Later definitions of the coupling coefficient are generalizations or refinements of preceding definitions.
Earlier well-known definitions of the coupling coefficient of resonators are given in monograph by G. Matthaei et al. [2] Note that these definitions are approximate because they were formulated in the assumption that the coupling between resonators is sufficiently small. The coupling coefficient for the case of two equal resonators is defined by formula
(1)
where are the frequencies of even and odd coupled oscillations of unloaded pair of the resonators and It is obvious that the coupling coefficient defined by formula (2) is a positive constant that characterizes interaction of resonators at the resonant frequency
In case when an appropriate equivalent network having an impedance or admittance inverter loaded at both ports with resonant one-port networks may be matched with the pair of coupled resonators with equal resonant frequencies, the coupling coefficient is defined by the formula
(2)
for series-type resonators and by the formula
(3)
for parallel-type resonators. Here are impedance-inverter and admittance-inverter parameters, are reactance slope parameters of the first and the second resonant series-type networks at resonant frequency and are the susceptance slope parameters of the first and the second resonant parallel-type networks.
When the resonators are resonant LC-circuits the coupling coefficient in accordance with (2) and (3) takes the value
(4)
for the circuits with inductive coupling and the value
(5)
for the circuits with capacitive coupling. Here are the inductance and the capacitance of the first circuit, are the inductance and the capacitance of the second circuit, and are mutual inductance and mutual capacitance. Formulas (4) and (5) are known for a long time in theory of electrical networks. They represent values of inductive and capacitive coupling coefficients of the coupled resonant LC-circuits.
Refinement of the approximate formula (1) was fulfilled in. [3] Exact formula has a form
(6)
Formulae (4) and (5) were used while deriving this expression. Now formula (6) is universally recognized. It is given in highly cited monograph by J-S. Hong. [4] It is seen that the coupling coefficient has a negative value if
In accordance with new definition (6), the value of the inductive coupling coefficient of resonant LC-circuits is expressed by formula (4) as before. It has a positive value when and a negative value when
Whereas the value of the capacitive coupling coefficient of resonant LC-circuits is always negative. In accordance with (6), the formula (5) for the capacitive coupling coefficient of resonant circuits takes a different form
(7)
Coupling between electromagnetic resonators may be realized both by magnetic or electric field. Coupling by magnetic field is characterized by the inductive coupling coefficient and coupling by electric field is characterized by the capacitive coupling coefficient Usually absolute values of and monotonically decay when the distance between the resonators increases. Their decay rates may be different. However absolute value of their sum may both decay all over distance range and grow over some distance range. [5]
Summation of the inductive and capacitive coupling coefficients is performed by formula [3]
(8)
This formula is derived from the definition (6) and formulas (4) and (7).
Note that the sign of the coupling coefficient itself is of no importance. Frequency response of the filter will not change if signs of all the coupling coefficients would be simultaneously alternated. However, the sign is important during collation of two coupling coefficients and especially during summation of inductive and capacitive coupling coefficients.
Two coupled resonators may interact not only at the resonant frequencies. That is supported by ability to transfer energy of forced oscillations from one resonator to the other resonator. Therefore it would be more accurate to characterize interaction of resonators by a continuous function of forced-oscillation frequency rather than set of constants where is order number of the resonance.
It is obvious that the function must meet the condition
(9)
Besides, the function must become zero at those frequencies where transmission of high frequency power from one resonator to another one is absent, i.e. must meet the second condition
(10)
The transmission zero arises in particularly in resonant circuits with mixed inductive-capacitive coupling when Its frequency is expressed by formula [6]
.(11)
The definition of the function that generalizes formula (6) and meets the conditions (9) and (10) was stated on energy-based approach in. [6] This function is expressed by formula (8) through frequency-dependent inductive and capacitive coupling coefficients and defined by formulas
(12)
(13)
Here denotes energy of high frequency electromagnetic field stored by both resonators. Bar over denotes static component of high frequency energy, and dot denotes amplitude of oscillating component of high frequency energy. Subscript denotes magnetic part of high frequency energy, and subscript denotes electric part of high frequency energy. Subscripts 11, 12 and 22 denote parts of stored energy that are proportional to and where is complex amplitude of high frequency voltage at the first resonator port and is complex amplitude of voltage at the second resonator port.
Explicit functions of the frequency-dependent inductive and capacitive couplings for pair of coupled resonant circuits obtained from (12) and (13) have forms [6] (14)
(15)
where are resonant frequencies of the first and the second circuit disturbed by couplings. It is seen that values of these functions at coincide with constants and defined by formulas (14) and (15). Besides, function computed by formulae (8), (14) and (15) becomes zero at defined by formula (11).
Theory of microwave narrow-band bandpass filters that have Chebyshev frequency response is stated in monograph. [2] In these filters the resonant frequencies of all the resonators are tuned to the passband center frequency Every resonator is coupled with two neighbor resonators at most. Each of two edge resonators is coupled with one neighbor resonator and one of two filter ports. Such the topology of resonator couplings is called inline one. There is only one path of microwave power transmission from the input port to the output port in filters with inline coupling topology.
Derivation of approximate formulas for the values of the coupling coefficients of neighbor resonators in filters with inline coupling topology those meet specified filter frequency response is given in. [2] Here and are order numbers of the coupled resonators in the filter. The formulae were derived using low-pass prototype filters as well as formulae (2) and (3). Frequency response of the low-pass prototype filters is characterized by Chebyshev function of the first kind. The formulas were first published in. [7] They have a form
(16)
where are normalized prototype element values, is order of the Chebyshev function which is equal to the number of the resonators, are the band-edge frequencies.
Prototype element values for a specified bandpass of the filter are computed by formulas
(17)
if is even,
if is odd.
Here the next notations were used
(18)
where is the required passband ripple in dB.
Formulas (16) are approximate not only because of the approximate definitions (2) and (3) for coupling coefficients were used. Exact expressions for the coupling coefficients in prototype filter were obtained in. [8] However both former and refined formulae remain approximate in designing practical filters. The accuracy depends on both filter structure and resonator structure. The accuracy improves when the fractional bandwidth narrows.
Inaccuracy of formulas (16) and their refined version is caused by the frequency dispersion of the coupling coefficients that may varies in a great degree for different structures of resonators and filters. [9] In other words, the optimal values of the coupling coefficients at frequency depend on both specifications of the required passband and values of the derivatives That means the exact values of the coefficients ensuring the required passband can not be known beforehand. They may be established only after filter optimization. Therefore, the formulas (16) may be used to determine initial values of the coupling coefficients before optimization of the filter.
The approximate formulas (16) allow also to ascertain a number of universal regularities concerning filters with inline coupling topology. For example, widening of current filter passband requires approximately proportional increment of all the coupling coefficients The coefficients are symmetrical with respect to the central resonator or the central pair of resonators even in filters having unequal characteristic impedances of transmission lines in the input and output ports. Value of the coefficient monotonically decreases with moving from the external pairs of resonators to the central pair.
Real microwave filters with inline coupling topology as opposed to their prototypes may have transmission zeroes in stopbands. [10] Transmission zeroes considerably improve filter selectivity. One of the reasons why zeroes arise is frequency dispersion of coupling coefficients for one or more pairs of resonators expressing in their vanishing at frequencies of transmission zeroes. [11]
In order to generate transmission zeroes in stopbands for the purpose to improve filter selectivity, a number of supplementary couplings besides the nearest couplings are often made in the filters. They are called cross couplings. These couplings bring to foundation of several wave paths from the input port to the output port. Amplitudes of waves transmitted through different paths may compensate themselves at some separate frequencies while summing at the output port. Such the compensation results in transmission zeroes.
In filters with cross couplings, it is convenient to characterize all filter couplings as a whole using a coupling matrix of dimension ,. [4] [12] It is symmetrical. Every its off-diagonal element is the coupling coefficient of ith and jth resonators Every diagonal element is the normalized susceptance of the ith resonator. All diagonal elements in a tuned filter are equal to zero because a susceptance vanishes at the resonant frequency.
Important merit of the matrix is the fact that it allows to directly compute the frequency response of the equivalent network having the inductively coupled resonant circuits,. [4] [12] Therefore it is convenient to use this matrix when designing the cross-coupled filters. The coupling matrices , in particular, are used as coarse models of filters. [13] Utilization of a coarse model allows to quicken filter optimization manyfold because of computation of the frequency response for the coarse model does not consume CPU time with respect to computation for the real filter.
Because the coupling coefficient is a function of both the mutual inductance and capacitance, it can also be expressed in terms of the vector fields and . Hong proposed that the coupling coefficient is the sum of the normalized overlap integrals [14] [15]
(19)
where
(20)
and
(21)
On the contrary, based on a coupled mode formalism, Awai and Zhang derived expressions for which is in favor of using the negative sign i.e., [16] [17]
(22)
Formulae (19) and (22) are approximate. They match the exact formula (8) only in case of a weak coupling. Formulae (20) and (21) in contrast to formulas (12) and (13) are approximate too because they do not describe a frequency dispersion which may often manifest itself in a form of transmission zeros in frequency response of a multi-resonator bandpass filter.
Using Lagrange’s equation of motion, it was demonstrated that the interaction between two split-ring resonators, which form a meta-dimer, depends on the difference between the two terms. In this case, the coupled energy was expressed in terms of the surface charge and current densities. [18] [19] [20]
Recently, based on Energy Coupled Mode Theory (ECMT), [21] a coupled mode formalism in the form of an eigenvalue problem, it was shown that the coupling coefficient is indeed the difference between the magnetic and electric components and . [22] Using Poynting's theorem in its microscopic form, it was shown that can be expressed in terms of the interaction energy between the resonators' modes.
The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.
Resonance is the phenomenon, pertaining to oscillatory dynamical systems, wherein amplitude rises are caused by an external force with time-varying amplitude with the same frequency of variation as the natural frequency of the system. The amplitude rises that occur are a result of the fact that applied external forces at the natural frequency entail a net increase in mechanical energy of the system.
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.
In physics and engineering, the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results. Higher Q indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.
Wireless power transfer (WPT), wireless power transmission, wireless energy transmission (WET), or electromagnetic power transfer is the transmission of electrical energy without wires as a physical link. In a wireless power transmission system, an electrically powered transmitter device generates a time-varying electromagnetic field that transmits power across space to a receiver device; the receiver device extracts power from the field and supplies it to an electrical load. The technology of wireless power transmission can eliminate the use of the wires and batteries, thereby increasing the mobility, convenience, and safety of an electronic device for all users. Wireless power transfer is useful to power electrical devices where interconnecting wires are inconvenient, hazardous, or are not possible.
An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act as an electrical resonator, an electrical analogue of a tuning fork, storing energy oscillating at the circuit's resonant frequency.
A Colpitts oscillator, invented in 1918 by Canadian-American engineer Edwin H. Colpitts using vacuum tubes, is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.
An optical ring resonator is a set of waveguides in which at least one is a closed loop coupled to some sort of light input and output. The concepts behind optical ring resonators are the same as those behind whispering galleries except that they use light and obey the properties behind constructive interference and total internal reflection. When light of the resonant wavelength is passed through the loop from the input waveguide, the light builds up in intensity over multiple round-trips owing to constructive interference and is output to the output bus waveguide which serves as a detector waveguide. Because only a select few wavelengths will be at resonance within the loop, the optical ring resonator functions as a filter. Additionally, as implied earlier, two or more ring waveguides can be coupled to each other to form an add/drop optical filter.
In microwave and radio-frequency engineering, a stub or resonant stub is a length of transmission line or waveguide that is connected at one end only. The free end of the stub is either left open-circuit, or short-circuited. Neglecting transmission line losses, the input impedance of the stub is purely reactive; either capacitive or inductive, depending on the electrical length of the stub, and on whether it is open or short circuit. Stubs may thus function as capacitors, inductors and resonant circuits at radio frequencies.
Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close to one.
The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.
A microwave cavity or radio frequency cavity is a special type of resonator, consisting of a closed metal structure that confines electromagnetic fields in the microwave or RF region of the spectrum. The structure is either hollow or filled with dielectric material. The microwaves bounce back and forth between the walls of the cavity. At the cavity's resonant frequencies they reinforce to form standing waves in the cavity. Therefore, the cavity functions similarly to an organ pipe or sound box in a musical instrument, oscillating preferentially at a series of frequencies, its resonant frequencies. Thus it can act as a bandpass filter, allowing microwaves of a particular frequency to pass while blocking microwaves at nearby frequencies.
Resonant inductive coupling or magnetic phase synchronous coupling is a phenomenon with inductive coupling in which the coupling becomes stronger when the "secondary" (load-bearing) side of the loosely coupled coil resonates. A resonant transformer of this type is often used in analog circuitry as a bandpass filter. Resonant inductive coupling is also used in wireless power systems for portable computers, phones, and vehicles.
In physics, nonlinear resonance is the occurrence of resonance in a nonlinear system. In nonlinear resonance the system behaviour – resonance frequencies and modes – depends on the amplitude of the oscillations, while for linear systems this is independent of amplitude. The mixing of modes in non-linear systems is termed resonant interaction.
An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.
Circuit quantum electrodynamics provides a means of studying the fundamental interaction between light and matter. As in the field of cavity quantum electrodynamics, a single photon within a single mode cavity coherently couples to a quantum object (atom). In contrast to cavity QED, the photon is stored in a one-dimensional on-chip resonator and the quantum object is no natural atom but an artificial one. These artificial atoms usually are mesoscopic devices which exhibit an atom-like energy spectrum. The field of circuit QED is a prominent example for quantum information processing and a promising candidate for future quantum computation.
A frequency-selective surface (FSS) is any thin, repetitive surface designed to reflect, transmit or absorb electromagnetic fields based on the frequency of the field. In this sense, an FSS is a type of optical filter or metal-mesh optical filters in which the filtering is accomplished by virtue of the regular, periodic pattern on the surface of the FSS. Though not explicitly mentioned in the name, FSS's also have properties which vary with incidence angle and polarization as well - these are unavoidable consequences of the way in which FSS's are constructed. Frequency-selective surfaces have been most commonly used in the radio frequency region of the electromagnetic spectrum and find use in applications as diverse as the aforementioned microwave oven, antenna radomes and modern metamaterials. Sometimes frequency selective surfaces are referred to simply as periodic surfaces and are a 2-dimensional analog of the new periodic volumes known as photonic crystals.
A double-tuned amplifier is a tuned amplifier with transformer coupling between the amplifier stages in which the inductances of both the primary and secondary windings are tuned separately with a capacitor across each. The scheme results in a wider bandwidth and steeper skirts than a single tuned circuit would achieve.
Cavity optomechanics is a branch of physics which focuses on the interaction between light and mechanical objects on low-energy scales. It is a cross field of optics, quantum optics, solid-state physics and materials science. The motivation for research on cavity optomechanics comes from fundamental effects of quantum theory and gravity, as well as technological applications.
A loop-gap resonator (LGR) is an electromagnetic resonator that operates in the radio and microwave frequency ranges. The simplest LGRs are made from a conducting tube with a narrow slit cut along its length. The LGR dimensions are typically much smaller than the free-space wavelength of the electromagnetic fields at the resonant frequency. Therefore, relatively compact LGRs can be designed to operate at frequencies that are too low to be accessed using, for example, cavity resonators. These structures can have very sharp resonances making them useful for electron spin resonance (ESR) experiments, and precision measurements of electromagnetic material properties.