Crab cavity

Last updated
Schematic of the beam crossing with the tilt from the crab cavities. To provide maximum tilt at the crossing point, there is a 90 degree phase advance from the first cavity to the interaction point (IP). The correcting crab cavity must then be placed a further 90 degrees from the IP to correct the tilt, since a kick can only be done to the momentum. Therefore, there is a total of 180 degrees phase advance between the crab cavities, meaning that the momentum after the IP has the opposite sign as it was initially given. The correcting kick should thus have the same sign as the kick that created the crabbing. Crabcavity n2.svg
Schematic of the beam crossing with the tilt from the crab cavities. To provide maximum tilt at the crossing point, there is a 90 degree phase advance from the first cavity to the interaction point (IP). The correcting crab cavity must then be placed a further 90 degrees from the IP to correct the tilt, since a kick can only be done to the momentum. Therefore, there is a total of 180 degrees phase advance between the crab cavities, meaning that the momentum after the IP has the opposite sign as it was initially given. The correcting kick should thus have the same sign as the kick that created the crabbing.

Crab cavities are a form of electromagnetic cavity used in particle accelerators to provide a transverse deflection to particle bunches. They can be used to provide rotation to a charged particle bunch by applying a time varying magnetic field. This rotation of the bunch can be used as a diagnostic tool to measure the length of a bunch (the longitudinal dimension is projected into the transverse plane, and imaged) or as a means of increasing the luminosity at an interaction point of a collider if the colliding beams cross each other at an angle (then called crab crossing). The KEKB accelerator introduced this technology in its last upgrade. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Klystron</span> Vacuum tube used for amplifying radio waves

A klystron is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russell and Sigurd Varian, which is used as an amplifier for high radio frequencies, from UHF up into the microwave range. Low-power klystrons are used as oscillators in terrestrial microwave relay communications links, while high-power klystrons are used as output tubes in UHF television transmitters, satellite communication, radar transmitters, and to generate the drive power for modern particle accelerators.

<span class="mw-page-title-main">Linear particle accelerator</span> Type of particle accelerator

A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.

<span class="mw-page-title-main">Resonator</span> Device or system that exhibits resonance

A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical. Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones. Another example is quartz crystals used in electronic devices such as radio transmitters and quartz watches to produce oscillations of very precise frequency.

<span class="mw-page-title-main">Large Electron–Positron Collider</span> Particle accelerator at CERN, Switzerland

The Large Electron–Positron Collider (LEP) was one of the largest particle accelerators ever constructed. It was built at CERN, a multi-national centre for research in nuclear and particle physics near Geneva, Switzerland.

<span class="mw-page-title-main">Synchrotron</span> Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 tera electronvolts (TeV or 1012 eV).

A charged particle beam is a spatially localized group of electrically charged particles that have approximately the same position, kinetic energy, and direction. The kinetic energies of the particles are much larger than the energies of particles at ambient temperature. The high energy and directionality of charged particle beams make them useful for many applications in particle physics.

<span class="mw-page-title-main">Compact Linear Collider</span>

The Compact Linear Collider (CLIC) is a concept for a future linear particle accelerator that aims to explore the next energy frontier. CLIC would collide electrons with positrons and is currently the only mature option for a multi-TeV linear collider. The accelerator would be between 11 and 50 km long, more than ten times longer than the existing Stanford Linear Accelerator (SLAC) in California, USA. CLIC is proposed to be built at CERN, across the border between France and Switzerland near Geneva, with first beams starting by the time the Large Hadron Collider (LHC) has finished operations around 2035.

<span class="mw-page-title-main">International Linear Collider</span> Proposed linear accelerator for subatomic particles

The International Linear Collider (ILC) is a proposed linear particle accelerator. It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). Although early proposed locations for the ILC were Japan, Europe (CERN) and the USA (Fermilab), the Kitakami highland in the Iwate prefecture of northern Japan has been the focus of ILC design efforts since 2013. The Japanese government is willing to contribute half of the costs, according to the coordinator of study for detectors at the ILC.

<span class="mw-page-title-main">HERA (particle accelerator)</span>

HERA was a particle accelerator at DESY in Hamburg. It began operating in 1992. At HERA, electrons or positrons were collided with protons at a center of mass energy of 318 GeV. It was the only lepton-proton collider in the world while operating. Also, it was on the energy frontier in certain regions of the kinematic range. HERA was closed down on 30 June 2007.

<span class="mw-page-title-main">KEKB (accelerator)</span> Particle accelerator at the High Energy Accelerator Research Organisation, Tsukuba, Japan

KEKB was a particle accelerator used in the Belle experiment to study CP violation. KEKB was located at the KEK in Tsukuba, Ibaraki Prefecture, Japan. It has been superseded by its upgrade, the SuperKEKB accelerator. The SuperKEKB is a luminosity upgrade of KEKB. SuperKEKB had its first particle collisions in 2018. The SuperKEKB accelerator produces particle beams for the Belle II experiment, which is an upgrade of the Belle experiment. The Belle experiments studied b-quark hadrons to research CP violation.

Plasma acceleration is a technique for accelerating charged particles, such as electrons, positrons, and ions, using the electric field associated with electron plasma wave or other high-gradient plasma structures. The plasma acceleration structures are created either using ultra-short laser pulses or energetic particle beams that are matched to the plasma parameters. These techniques offer a way to build high performance particle accelerators of much smaller size than conventional devices. The basic concepts of plasma acceleration and its possibilities were originally conceived by Toshiki Tajima and John M. Dawson of UCLA in 1979. The initial experimental designs for a "wakefield" accelerator were conceived at UCLA by Chandrashekhar J. Joshi et al. Current experimental devices show accelerating gradients several orders of magnitude better than current particle accelerators over very short distances, and about one order of magnitude better at the one meter scale.

Radiation damping in accelerator physics is a way of reducing the beam emittance of a high-velocity charged particle beam by synchrotron radiation.

Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emittance of the particle beams in the machine. This process uses the electrical signals that the individual charged particles generate in a feedback loop to reduce the tendency of individual particles to move away from the other particles in the beam.

The electron-cloud effect is a phenomenon that occurs in particle accelerators and reduces the quality of the particle beam.

The High Luminosity Large Hadron Collider is an upgrade to the Large Hadron Collider, operated by the European Organization for Nuclear Research (CERN), located at the French-Swiss border near Geneva. From 2011 to 2020, the project was led by Lucio Rossi. In 2020, the lead role was taken up by Oliver Brüning.

<span class="mw-page-title-main">Superconducting radio frequency</span> Technique used to attain a high quality factor in resonant cavities

Superconducting radio frequency (SRF) science and technology involves the application of electrical superconductors to radio frequency devices. The ultra-low electrical resistivity of a superconducting material allows an RF resonator to obtain an extremely high quality factor, Q. For example, it is commonplace for a 1.3 GHz niobium SRF resonant cavity at 1.8 kelvins to obtain a quality factor of Q=5×1010. Such a very high Q resonator stores energy with very low loss and narrow bandwidth. These properties can be exploited for a variety of applications, including the construction of high-performance particle accelerator structures.

<span class="mw-page-title-main">Particle accelerator</span> Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

<span class="mw-page-title-main">Storage ring</span> Type of particle accelerator

A storage ring is a type of circular particle accelerator in which a continuous or pulsed particle beam may be kept circulating typically for many hours. Storage of a particular particle depends upon the mass, momentum and usually the charge of the particle to be stored. Storage rings most commonly store electrons, positrons, or protons.

In accelerator physics, shunt impedance is a measure of the strength with which an eigenmode of a resonant radio frequency structure interacts with charged particles on a given straight line, typically along the axis of rotational symmetry. If not specified further, the term is likely to refer to longitudinal effective shunt impedance.

<span class="mw-page-title-main">Future Circular Collider</span> Proposed post-LHC particle accelerator at CERN, Geneva, Switzerland

The Future Circular Collider (FCC) is a proposed particle accelerator with an energy significantly above that of previous circular colliders, such as the Super Proton Synchrotron, the Tevatron, and the Large Hadron Collider (LHC). The FCC project is considering three scenarios for collision types: FCC-hh, for hadron-hadron collisions, including proton-proton and heavy ion collisions, FCC-ee, for electron-positron collisions, and FCC-eh, for electron-hadron collisions.

References

  1. Iva Raynova (8 December 2017). "Crab cavities: colliding protons head-on". CERN. Archived from the original on 2019-06-13. Retrieved 7 April 2023.