Crackling noise arises when a system is subject to an external force and it responds via events that appear very similar at many different scales. In a classical system there are usually two states, on and off. However, sometimes a state can exist in between. There are three main categories this noise can be sorted into: the first is popping where events at very similar magnitude occur continuously and randomly, e.g. popcorn; the second is snapping where there is little change in the system until a critical threshold is surpassed, at which point the whole system flips from one state to another, e.g. snapping a pencil; the third is crackling which is a combination of popping and snapping, where there are some small and some large events with a relation law predicting their occurrences, referred to as universality. [1] Crackling can be observed in many natural phenomena, e.g. crumpling paper, [2] candy wrappers (or other elastic sheets), [3] [4] fire, occurrences of earthquakes and the magnetisation of ferromagnetic material.
Cracking noise contrasts with snapping noise and popping noise. Snapping noise is one large yielding event, while popping noise is a constant level of similar-sized, small yielding events. Crackling is between these. It occurs when connection strengths between components of the system is at a critical level, such that there are many yielding events with sizes spanned across several orders of magnitude. [5]
Some of these systems are reversible, such as demagnetisation (by heating a magnet to its Curie temperature), [6] while others are irreversible, such as an avalanche (where the snow can only move down a mountain), but many systems have a positive bias causing it to eventually move from one state to another, such as gravity or another external force.
Research into the study of small perturbations within a large domains began in the late 1910s when Heinrich Barkhausen investigated how the domains, or dipoles, within a ferromagnetic material changed under the influence of an external magnetic field. When demagnetised, a magnet’s dipoles are pointing in random directions hence the net magnetic force from all the dipoles will be zero. By coiling an iron bar with wire and passing an electric current through the wire, a magnetic field perpendicular to the coil is produced (Fleming’s right hand rule for a coil), this causes the dipoles within the magnet to align to the external field.
Contrary to what was thought at the time that these domains flip continuously one by one, Barkhausen found that clusters of domains flipped in small discrete steps. [7] By coiling a secondary coil around the bar connected to a speaker or detector, when a cluster of domains change alignment a change in flux occurs, this disrupts the current in the secondary coil and hence causes a signal output. When played out loud, this is referred to as Barkhausen noise, the magnetisation of the magnet increases in discrete steps as a function of the flux density. [8]
Further research into crackling noise was done in the late 1940s by Charles Francis Richter and Beno Gutenberg who examined earthquakes analytically. Before the invention of the well-known Richter scale, the Mercalli intensity scale was used; this is a subjective measurement of how damaging an earthquake was to property, i.e. II would be small vibrations and objects moving, while XII would be wide spread destruction of all buildings. The Richter scale is a logarithmic scale which measures the energy and amplitude of vibrations dissipated from the epicentre of the earthquake, i.e. a 7.0 earthquake is 10 times more powerful than a 6.0 earthquake. Together with Gutenberg, they went on to discover the Gutenberg–Richter law which is a probability distribution relationship between the magnitude of an earthquake and its probability of occurrence. It states that small earthquakes happen much more frequently and larger earthquakes occur very rarely. [9]
Gutenberg–Richter law [10] shows an inverse power relation between the number of earthquakes occurring N and its magnitude M with a proportionality constant b and intercept a.
To truly simulate such an environment, one would need a continuous infinite 3D system, however due to computational limitations a 2D cellular automata can be used to provide a near approximation; a million cells in the form of a 1000x1000 matrix is sufficient to test most scenarios. Each cell stores two pieces of information; the force applied to the cell which is a continuous quantity, and the state of the cell which is an integer value of either +1 (on) or −1 (off).
The net force is composed of three components which can correspond to physical attributes of any crackling noise system; the first is an external force field (K) that increases with time (t). The second component is a force that is dependent on the sum of the states of neighbouring cells (S) and the third is a random component (r) scaled by (X) [11]
The external force K is multiplied by time (t), where K is a positive scalar constant, however this can be varying and or negative as well. S represents the state of a cell (+1 or −1), the second component takes the sum of the four neighbouring cell states (up, down, left & right) and multiplies it by another scalar quantity, this is analogous to a coupling constant (J). The random number generator (r) is a normally distributed range of values with a mean of zero and a fixed standard deviation (rσ), this is also multiplied by a scalar constant (X). Of the three components of the net force (F), the neighbour and random components can produce positive and negative values, while the external force is only positive meaning that there is a forward bias applied to the system which over time becomes the dominant force.
If the net force on a cell is positive it will turn the cell on (+1) and off (−1) if the force on the cell is negative. In a 2D system, there are a multitude of state combinations and arrangements possible, but this can be grouped into three regions, two global stable states of all +1s or all −1s and an unstable state in between where there is a mixture of both states. Traditionally if the system is unstable it will shortly flip to one of the global states, however under the perfect conditions, i.e. a critical point, a metastable state can form in between the two global states which is only sustainable if the parameters for the net force are balanced. The boundary conditions for the matrix wrap around top to bottom and left to right, problems for the corner cells can be negated using a large matrix.
Three statements can be formed to describe when and how the system reacts to stimulus. The difference between the external field and the other components decides whether a system pops or crackles, but there is also a special case if the modulus of the random and neighbour components are much greater than the external field, the system snaps to a density of zero and then slows down its rate of conversion.
Popping is when there are small perturbations to the system which are reversible and have a negligible effect on the global system state.
Snapping is when large clusters of cells or the whole system flips to an alternate state, i.e. all +1s or all −1s. The whole system will only flip when it has reached a critical or tipping point.
Crackling is observed when the system experiences popping and snapping of reversible small and large clusters. The system is constantly imbalanced and attempts to reach equilibrium which is not possible due to internal or external forces.
By simulating earthquakes it is possible to observe the Gutenberg–Richter law, in this system the random component would have represented random perturbations in the ground and air and this could be anything from a violent weather system, natural continuous stimuli like a river flowing, waves hitting the shoreline or human activity such as drilling. This is much like the butterfly effect where one could not predict a future outcome of an event nor trace back to the original condition from a set time during the simulation and at the macroscopic level appears insignificant, but at the microscopic level may have been the cause for a chain reaction of events; one cell switching on may be responsible for the whole system flipping on.
The neighbour component for physical objects such as rocks or tectonic plates is simply a description of Newton’s laws of motion, if a plate is moving and collides with another plate, the other plate will provide a reactionary force, similarly if a large collection of loose particles (boulders, faults) is forced against its neighbour, the adjacent particle/object will also move.
The external force are the long term movements of tectonic plates or the liquid rock currents within the upper mantle, which is a continuous force applied eventually the plate will snap back or fracture relieving stress on the system to flipping it to a stable state, i.e. an earthquake. Volcanoes are similar in that the build-up of magma pressure underneath will eventually overcome the layer of dry rock on top causing an eruption. Such models can be used to predict the occurrence of earthquakes and volcanoes in active regions and predict aftershocks which are common after a large events.
During magnetisation of a magnet; the external field is the applied electric field, the neighbour component is the effect of localised magnetic fields of the dipoles and the random component represents other perturbations from external or internal stimuli. There are many practical applications to this, a manufacturer can use this type of simulation to non-destructively test their magnets to see how it responds under certain conditions. To test its magnetisation after taking a large force i.e. a hammer blow or dropping it on the floor, one could suddenly increase the external force (H) or the coupling constant (J). To test heat conditions a boundary condition could be applied to one edge with an increase in thermal fluctuations (increase X), this would require a three dimensional model.
The behaviour of stock prices have shown properties of universality. By taking historical share price data of a company, [12] calculating the daily returns and then plotting this in a histogram would produce a fat-tailed non-Gaussian distribution. Stock prices will fluctuate with small variations constantly and larger changes much more rarely; a stock exchange could be interpreted as the force responsible to bring the share price to equilibrium by adjusting the price to the supply and demand quota.
The mergers of companies where small companies are regularly forming, often start-ups which are very volatile, if it survives a period of time then it is likely to continue to grow, once it becomes large enough it is able to buy other smaller companies increasing its own size. This is much like larger companies buying their competitors out to increase their own market share and so on and so forth, until the market becomes saturated.
It is not possible for systems in the real world to remain in permanent equilibrium as there are too many external factors contributing to the system's state. The system can either be in temporary equilibrium and then suddenly fail due to a stimulus or be in a constant state of changing phases due to an external force attempting to balance the system. These systems observe popping, snapping and crackling behaviour.
Ferromagnetism is a property of certain materials that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are familiar metals that are noticeably attracted to a magnet, a consequence of their substantial magnetic permeability. Magnetic permeability describes the induced magnetization of a material due to the presence of an external magnetic field. This temporarily induced magnetization, for example, inside a steel plate, accounts for its attraction to the permanent magnet. Whether or not that steel plate acquires a permanent magnetization itself depends not only on the strength of the applied field but on the so-called coercivity of the ferromagnetic material, which can vary greatly.
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.
In electromagnetism, a dielectric is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of dielectric polarisation, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarised, but also reorient so that their symmetry axes align to the field.
A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, one that measures the direction of an ambient magnetic field, in this case, the Earth's magnetic field. Other magnetometers measure the magnetic dipole moment of a magnetic material such as a ferromagnet, for example by recording the effect of this magnetic dipole on the induced current in a coil.
In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.
A ferrimagnetic material is a material that has populations of atoms with opposing magnetic moments, as in antiferromagnetism, but these moments are unequal in magnitude so a spontaneous magnetization remains. This can for example occur when the populations consist of different atoms or ions (such as Fe2+ and Fe3+).
In continuum mechanics, stress is a physical quantity that describes forces present during deformation. An object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has units of force per area, such as newtons per square meter (N/m2) or pascal (Pa).
In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.
Earnshaw's theorem states that a collection of point charges cannot be maintained in a stable stationary equilibrium configuration solely by the electrostatic interaction of the charges. This was first proven by British mathematician Samuel Earnshaw in 1842. It is usually cited in reference to magnetic fields, but was first applied to electrostatic fields.
A Halbach array is a special arrangement of permanent magnets that augments the magnetic field on one side of the array while cancelling the field to near zero on the other side. This is achieved by having a spatially rotating pattern of magnetisation.
In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current, permanent magnets, elementary particles, composite particles, various molecules, and many astronomical objects.
Quadrupole magnets, abbreviated as Q-magnets, consist of groups of four magnets laid out so that in the planar multipole expansion of the field, the dipole terms cancel and where the lowest significant terms in the field equations are quadrupole. Quadrupole magnets are useful as they create a magnetic field whose magnitude grows rapidly with the radial distance from its longitudinal axis. This is used in particle beam focusing.
The moment magnitude scale is a measure of an earthquake's magnitude based on its seismic moment. It was defined in a 1979 paper by Thomas C. Hanks and Hiroo Kanamori. Similar to the local magnitude/Richter scale (ML ) defined by Charles Francis Richter in 1935, it uses a logarithmic scale; small earthquakes have approximately the same magnitudes on both scales. Despite the difference, news media often says "Richter scale" when referring to the moment magnitude scale.
The Barkhausen effect is a name given to the noise in the magnetic output of a ferromagnet when the magnetizing force applied to it is changed. Discovered by German physicist Heinrich Barkhausen in 1919, it is caused by rapid changes of size of magnetic domains.
Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity.
The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.
A magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When cooled below a temperature called the Curie temperature, the magnetization of a piece of ferromagnetic material spontaneously divides into many small regions called magnetic domains. The magnetization within each domain points in a uniform direction, but the magnetization of different domains may point in different directions. Magnetic domain structure is responsible for the magnetic behavior of ferromagnetic materials like iron, nickel, cobalt and their alloys, and ferrimagnetic materials like ferrite. This includes the formation of permanent magnets and the attraction of ferromagnetic materials to a magnetic field. The regions separating magnetic domains are called domain walls, where the magnetization rotates coherently from the direction in one domain to that in the next domain. The study of magnetic domains is called micromagnetics.
A magnetorquer or magnetic torquer is a satellite system for attitude control, detumbling, and stabilization built from electromagnetic coils. The magnetorquer creates a magnetic dipole that interfaces with an ambient magnetic field, usually Earth's, so that the counter-forces produced provide useful torque.
Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces.
Lorentz force velocimetry (LFV) is a noncontact electromagnetic flow measurement technique. LFV is particularly suited for the measurement of velocities in liquid metals like steel or aluminium and is currently under development for metallurgical applications. The measurement of flow velocities in hot and aggressive liquids such as liquid aluminium and molten glass constitutes one of the grand challenges of industrial fluid mechanics. Apart from liquids, LFV can also be used to measure the velocity of solid materials as well as for detection of micro-defects in their structures.