Cyclotomic identity

Last updated

In mathematics, the cyclotomic identity states that

where M is Moreau's necklace-counting function,

and μ is the classic Möbius function of number theory.

The name comes from the denominator, 1  z j, which is the product of cyclotomic polynomials.

The left hand side of the cyclotomic identity is the generating function for the free associative algebra on α generators, and the right hand side is the generating function for the universal enveloping algebra of the free Lie algebra on α generators. The cyclotomic identity witnesses the fact that these two algebras are isomorphic.

There is also a symmetric generalization of the cyclotomic identity found by Strehl:

Related Research Articles

In mathematics, the Laplace transform, named after its inventor Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable . The transform has many applications in science and engineering because it is a tool for solving differential equations. In particular, it transforms differential equations into algebraic equations and convolution into multiplication.

Pauli matrices Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries. They are

Exponential distribution Probability distribution

In probability theory and statistics, the exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

Beta function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field, and is an example of a self-dual topological ring.

In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2-grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the even elements of the superalgebra correspond to bosons and odd elements to fermions.

Quantum group Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups.

In combinatorial mathematics, the necklace polynomial, or Moreau's necklace-counting function, introduced by C. Moreau (1872), counts the number of distinct necklaces of n colored beads chosen out of α available colors. The necklaces are assumed to be aperiodic, and the counting is done "without flipping over". This counting function describes, among other things, the number of free Lie algebras and the number of irreducible polynomials over a finite field.

In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's last theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.

KMS state

In the statistical mechanics of quantum mechanical systems and quantum field theory, the properties of a system in thermal equilibrium can be described by a mathematical object called a Kubo–Martin–Schwinger state or, more commonly, a KMS state: a state satisfying the KMS condition. Kubo (1957) introduced the condition, Martin & Schwinger (1959) used it to define thermodynamic Green's functions, and Rudolf Haag, M. Winnink, and N. M. Hugenholtz (1967) used the condition to define equilibrium states and called it the KMS condition.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics the Selberg integral is a generalization of Euler beta function to n dimensions introduced by Atle Selberg (1944).

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product

In mathematics, Jacobi polynomialsP(α, β)
n
(x)
are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight (1 − x)α(1 + x)β on the interval [−1, 1]. The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.

In probability theory and statistics, the noncentral beta distribution is a continuous probability distribution that is a noncentral generalization of the (central) beta distribution.

Vasiliev equations are formally consistent gauge invariant nonlinear equations whose linearization over a specific vacuum solution describes free massless higher-spin fields on anti-de Sitter space. The Vasiliev equations are classical equations and no Lagrangian is known that starts from canonical two-derivative Frønsdal Lagrangian and is completed by interactions terms. There is a number of variations of Vasiliev equations that work in three, four and arbitrary number of space-time dimensions. Vasiliev's equations admit supersymmetric extensions with any number of super-symmetries and allow for Yang-Mills gaugings. Vasiliev's equations are background independent, the simplest exact solution being anti-de Sitter space. It is important to note that locality is not properly implemented and the equations give a solution of certain formal deformation procedure, which is difficult to map to field theory language. The higher-spin AdS/CFT correspondence is reviewed in Higher-spin theory article.

Tau functions are an important ingredient in the modern theory of integrable systems, and have numerous applications in a variety of other domains. Before being named as such, they were effectively introduced by Ryogo Hirota in his direct method approach to integrable systems, based on expressing them in an equivalent bilinear form. The term Tau function, or -function, was first used systematically by Mikio Sato and his students in the specific context of the Kadomtsev–Petviashvili equation, and related integrable hierarchies. It is a central ingredient in the theory of solitons. Tau functions also appear as matrix model partition functions in the spectral theory of Random Matrices, and may also serve as generating functions, in the sense of combinatorics and enumerative geometry, especially in relation to moduli spaces of Riemann surfaces, and enumeration of branched coverings, or so-called Hurwitz numbers.

References