Cypher stent

Last updated

Cypher is a brand of drug-eluting coronary stent from Cordis Corporation, a Cardinal Health company. During a balloon angioplasty, the stent is inserted into the artery to provide a "scaffold" to open the artery. An anti-rejection-type medication, sirolimus, helps to limit the overgrowth of normal cells while the artery heals which reduces the chance of re-blockage in the treated area known as restenosis, and reduces the chances that another procedure is required. [1] [2]

The Cypher stent was approved for use by the FDA in 2003. [2] Following claims of inconsistent manufacturing processes and poor sales, Johnson & Johnson have announced that it will stop selling Cypher stents by the end of 2011. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Angioplasty</span> Procedure to widen narrow arteries or veins

Angioplasty, also known as balloon angioplasty and percutaneous transluminal angioplasty (PTA), is a minimally invasive endovascular procedure used to widen narrowed or obstructed arteries or veins, typically to treat arterial atherosclerosis.

<span class="mw-page-title-main">Stent</span> Type of medical device

In medicine, a stent is a tube usually constructed of a metallic alloy or a polymer. It is inserted into the lumen of an anatomic vessel or duct to keep the passageway open. Stenting refers to the placement of a stent. The word "stent" is also used as a verb to describe the placement of such a device, particularly when a disease such as atherosclerosis has pathologically narrowed a structure such as an artery.

<span class="mw-page-title-main">Sirolimus</span> Pharmaceutical drug

Sirolimus, also known as rapamycin and sold under the brand name Rapamune among others, is a macrolide compound that is used to coat coronary stents, prevent organ transplant rejection, treat a rare lung disease called lymphangioleiomyomatosis, and treat perivascular epithelioid cell tumor (PEComa). It has immunosuppressant functions in humans and is especially useful in preventing the rejection of kidney transplants. It is a mechanistic target of rapamycin (mTOR) kinase inhibitor that reduces the sensitivity of T cells and B cells to interleukin-2 (IL-2), inhibiting their activity.

<span class="mw-page-title-main">Everolimus</span> Chemical compound

Everolimus, sold under the brand name Afinitor among others, is a medication used as an immunosuppressant to prevent rejection of organ transplants and as a targeted therapy in the treatment of renal cell cancer and other tumours.

<span class="mw-page-title-main">Coronary catheterization</span> Radiography of heart and blood vessels

A coronary catheterization is a minimally invasive procedure to access the coronary circulation and blood filled chambers of the heart using a catheter. It is performed for both diagnostic and interventional (treatment) purposes.

<span class="mw-page-title-main">Restenosis</span> Recurrence of stenosis, a narrowing of a blood vessel

Restenosis is the recurrence of stenosis, a narrowing of a blood vessel, leading to restricted blood flow. Restenosis usually pertains to an artery or other large blood vessel that has become narrowed, received treatment to clear the blockage and subsequently become renarrowed. This is usually restenosis of an artery, or other blood vessel, or possibly a vessel within an organ.

<span class="mw-page-title-main">Percutaneous coronary intervention</span> Medical techniques used to manage coronary occlusion

Percutaneous coronary intervention (PCI) is a minimally invasive non-surgical procedure used to treat narrowing of the coronary arteries of the heart found in coronary artery disease. The procedure is used to place and deploy coronary stents, a permanent wire-meshed tube, to open narrowed coronary arteries. PCI is considered 'non-surgical' as it uses a small hole in a peripheral artery (leg/arm) to gain access to the arterial system, an equivalent surgical procedure would involve the opening of the chest wall to gain access to the heart area. The term 'coronary angioplasty with stent' is synonymous with PCI. The procedure visualises the blood vessels via fluoroscopic imaging and contrast dyes. PCI is performed by an interventional cardiologists in a catheterization laboratory setting.

<span class="mw-page-title-main">Drug-eluting stent</span> Medical implant

A drug-eluting stent (DES) is a self-expanding tube made of a mesh-like material used to treat narrowed arteries (stenosis) in medical procedures. It is inserted into a narrowed artery using a balloon. Once the balloon inside the stent is inflated, the stent expands, pushing against the artery wall. The mesh design allows cells to grow through and around it, securing it in place. The stent slowly releases a drug to prevent re-blockage of the artery. The release of the drug from the stent to prevent the growth of scar tissue and reduce the risk of stent restenosis, which is the narrowing of the stented area of an artery after treatment. A drug-eluting stent is different from other types of stents because it has a coating that delivers medication directly to the arterial wall. A DES is often made of metal alloys and can be inserted into blocked or narrowed arteries through a catheter placed in a peripheral artery, such as in the arm or leg. DES is fully integrated with a catheter delivery system and is viewed as one integrated medical device.

Phosphorylcholine is the hydrophilic polar head group of some phospholipids, which is composed of a negatively charged phosphate bonded to a small, positively charged choline group. Phosphorylcholine is part of the platelet-activating factor; the phospholipid phosphatidylcholine and sphingomyelin, the only phospholipid of the membrane that is not built with a glycerol backbone. Treatment of cell membranes, like those of RBCs, by certain enzymes, like some phospholipase A2, renders the phosphorylcholine moiety exposed to the external aqueous phase, and thus accessible for recognition by the immune system. Antibodies against phosphorylcholine are naturally occurring autoantibodies that are created by CD5+/B-1 B cells and are referred to as non-pathogenic autoantibodies.

The history of invasive and interventional cardiology is complex, with multiple groups working independently on similar technologies. Invasive and interventional cardiology is currently closely associated with cardiologists, though the development and most of its early research and procedures were performed by diagnostic and interventional radiologists.

<span class="mw-page-title-main">Coronary stent</span> Medical stent implanted into coronary arteries

A coronary stent is a tube-shaped device placed in the coronary arteries that supply blood to the heart, to keep the arteries open in patients suffering from coronary heart disease. The vast majority of stents used in modern interventional cardiology are drug-eluting stents (DES). They are used in a medical procedure called percutaneous coronary intervention (PCI). Coronary stents are divided into two broad types: drug-eluting and bare metal stents. As of 2023, drug-eluting stents were used in more than 90% of all PCI procedures. Stents reduce angina and have been shown to improve survival and decrease adverse events after a patient has suffered a heart attack—medically termed an acute myocardial infarction.

<span class="mw-page-title-main">Zotarolimus</span> Chemical compound

Zotarolimus is an immunosuppressant. It is a semi-synthetic derivative of sirolimus (rapamycin). It was designed for use in stents with phosphorylcholine as a carrier. Zotarolimus, or ABT-578, was originally used on Abbott's coronary stent platforms to reduce early inflammation and restenosis; however, Zotarolimus failed Abbott's primary endpoint to bring their stent/drug delivery system to market. The drug was sold/distributed to Medtronic for use on their stent platforms, which is the same drug they use today. Coronary stents reduce early complications and improve late clinical outcomes in patients needing interventional cardiology. The first human coronary stent implantation was first performed in 1986 by Puel et al. However, there are complications associated with stent use, development of thrombosis which impedes the efficiency of coronary stents, haemorrhagic and restenosis complications are problems associated with stents.

<span class="mw-page-title-main">Bare-metal stent</span>

A bare-metal stent is a stent made of thin, uncoated (bare) metal wire that has been formed into a mesh-like tube. The first stents licensed for use in cardiac arteries were bare metal – often 316L stainless steel. More recent "second generation" bare-metal stents have been made of cobalt chromium alloy. While plastic stents were first used to treat gastrointestinal conditions of the esophagus, gastroduodenum, biliary ducts, and colon, bare-metal stent advancements led to their use for these conditions starting in the 1990s.

Julio Palmaz is a doctor of vascular radiology at University of Texas Health Science Center at San Antonio. He studied at the National University of La Plata in Argentina, earning his medical degree in 1971. He then practiced vascular radiology at the San Martin University Hospital in La Plata before moving to the University of Texas Health and Science Center at San Antonio. He is known for inventing the balloon-expandable stent, for which he received a patent filed in 1985. It was recognized in Intellectual Property International Magazine as one of "Ten Patents that Changed the World" in the last century. His early stent research artifacts are now part of the medical collection of the Smithsonian Institution in Washington, DC. He continues to innovate on his initial designs, developing new endovascular devices.

<span class="mw-page-title-main">Bioresorbable stent</span> Medical stent that dissolves or is absorbed by the body

A bioresorbable stent is a tube-like device (stent) that is used to open and widen clogged heart arteries and then dissolves or is absorbed by the body. It is made from a material that can release a drug to prevent scar tissue growth. It can also restore normal vessel function and avoid long-term complications of metal stents.

Genous is an endothelial progenitor cell (EPC) capture technology manufactured by OrbusNeich that promotes the accelerated natural healing of the vessel wall after stent implantation. The pro-healing technology has an antibody surface coating that captures circulating CD34+ endothelial progenitor cells to the device, forming a functional endothelial layer over the stent to protect against thrombus and minimize restenosis.

A dual therapy stent is a coronary artery stent that combines the technology of an antibody-coated stent and a drug-eluting stent. Currently, second-generation drug-eluting stents require long-term use of dual-antiplatelet therapy, which increases the risk of major bleeding occurrences in patients. Compared to drug-eluting stents, dual therapy stents have improved vessel regeneration and cell proliferation capabilities. As a result, dual therapy stents were developed to reduce the long-term need for dual-antiplatelet therapy.

MicroPort is a multinational medical technology developer and manufacturer that is primarily headquartered in Shanghai, China. It mainly designs and produces medical devices for a range of fields including cardiology, interventional radiology, orthopedics, electrophysiology, and surgical management. MicroPort is considered one of the global Medtech Big 100 and has been consistently known as the leading spender in research and development by percentage of revenue.

Alfredo E. Rodríguez is an Argentine interventional cardiologist, clinical researcher, and author. He is the Chief of Interventional Cardiology Service at Otamendi Hospital and Director and Founder of the Cardiovascular Research Center (CECI) a non -profit Research Organization in Buenos Aires Argentina.

Concept Medical Inc. (CMI) is a multinational medical devices company that develops and manufactures drug-eluting stents (DES) and drug-coated balloon (DCB), which are used in the treatment of coronary and peripheral artery diseases.

References

  1. "Learn about CYPHER Stent, the latest advance in stent technology". Cordis Corporation. Archived from the original on 2004-06-26. Retrieved 2008-04-01.
  2. 1 2 "CYPHER™ Sirolimus-eluting Coronary Stent - P020026". FDA.gov. U.S. Food and Drug Administration. Retrieved 1 Aug 2016.
  3. "J&J to quit struggling heart stent business". Reuters. 2011-06-15. Retrieved 2011-07-18.