DCVG

Last updated

DCVG (direct current voltage gradient) is a survey technique used for assessing the effectiveness of corrosion protection on buried steel structures. [1] In particular, oil and natural gas pipelines are routinely monitored using this technique to help locate coating faults and highlight deficiencies in their cathodic protection (CP) strategies.

Contents

History

The DCVG method was invented by Australian John Mulvany, an ex Telecom engineer, in the early 1980s.[ citation needed ] This technique was used by Telecom Australia to identify damaged insulation on buried metallic cable. At that time Santos in Adelaide was keen to use coating defect techniques for buried pipelines suffering corrosion in the Moomba area. John Leeds, a professional corrosion engineer, was employed by Santos to engage companies with relevant expertise. Initially international companies using the "CIPS" and "Pearson" technique were engaged.

Ike Solomon and Matthew Wong of Wilson Walton International engaged John Mulvaney to modify the DCVG technique to make it applicable for buried pipelines. Field testing of the method was first performed on the Shell White Oil Pipeline. Subsequently, trials were performed for both Santos and The Pipeline Authority of South Australia. Vastly superior results were obtained over the other techniques. Ike Solomon and Bob Phang of Solomon Corrosion Consulting Services first demonstrated the technique overseas in the USA and Canada in 1985, NZ Gas 1986 , Petronas Gas 1991 The Pipe CAMP PCS2000 DCVG system and equipment was approved by the Victorian engineering design council and patented from 1986. It has been available worldwide as a pipeline integrity assessment tool. Successful risk analysis and pipeline defects underground have been found before any leak developed. It has been accepted as a pipeline tool to determine potential leaks before catastrophic failure in steel pipelines transporting flammable gas and fluid. Water utilities are engaging DCVG Technique to predict potential water leaks as cost of treated water has increased over the years. [ citation needed ]

Today, the DCVG technique is universally accepted throughout the pipeline industry and is described in NACE International test method TM-0109-2009. [2] Industry codes referring to pipe/pipeline inspection (such as API 571 and API RP 574, published by the American Petroleum Institute) reference it as a suitable method for determining coating breakdown in buried pipelines. AMPP (NACE) Standard SP0502 developed in 2002 ECDA-external corrosion direct assessment. Key users SHELL / TOTAL / PETRONAS / SAUDI ARAMCO / SUMED EGYPT / PTT / SANTOS / UU AUSTRALIA ...

Background

Buried steel structures will eventually corrode if not provided corrosion control and the rate of corrosion can be unacceptably rapid in some soils or where exposed to salt water. The primary form of corrosion protection is usually one or more protective coatings, such as epoxy, bitumen, and resin. For buried pipelines, for example, coatings alone are insufficient as corrosion will likely occur at defects and corrosion control is commonly supplemented by cathodic protection. As pipelines age coatings deteriorate and the cathodic protection becomes increasingly important in mitigating corrosion damage. Prior to the use of DCVG, assessing the condition of the pipeline coating(s) was performed using indirect techniques like close interval potential surveys or expensive excavations of the pipeline.[ citation needed ]. The DCVG technique was developed to locate coating faults, quantify their severity and measure the effectiveness of the Cathodic protection used without having to disturb the pipeline.

Principle

Assuming that the buried pipeline is protected using Impressed Current Cathodic Protection (ICCP), then any defects in the coating will result in electric current flowing from the surrounding soil and into the pipe. These currents cause voltage gradients to be set up in the soil, which can be measured using a voltmeter. By looking at the direction of these gradients, the location of coating faults may be identified. By plotting the direction of voltage gradients around a fault, the type and nature of faults may be deduced. By measuring the localized soil potentials with respect to remote earth, a measure of the effectiveness of the cathodic protection may be calculated.

Practical methods

A purpose-built DCVG meter Dcvg-meter.jpg
A purpose-built DCVG meter

In theory, a standard analogue electronic multimeter could be used to perform a DCVG survey, but in practice it would be very difficult to take accurate readings and assess the direction of the voltage gradients correctly. A digital multimeter is completely unsuitable because of the difficulty in quickly assessing the direction of the voltage gradient. Specially designed DCVG meters are available, which have bespoke voltage ranges, specially designed transient response, rugged cases and (usually) a center-zero meter movement for ease of use. The NACE method requires the measurements to be made using a pair of copper-copper(II) sulfate electrodes rather than simple metallic probes. In addition, the cathodic protection is switched on and off repeatedly using an electronic switch commonly referred to as an interrupter. Thus, two voltage readings (the "on" and "off" potentials) are taken at each fault position. Counter-intuitively, it is actually the "off" potential which is regarded as more indicative of the effectiveness of the CP applied to the pipeline.

Pipelines which do not have any form of CP may be surveyed by using a temporary DC supply and anode bed. Long pipelines frequently have more than one DC supply for their CP, requiring a number of synchronized interrupters to perform a survey. DCVG surveys are often combined with other techniques, such as close interval potential survey and soil resistivity as part of a comprehensive corrosion protection program.

Results of a DCVG survey often result in selecting locations to excavate pipelines, which can be costly in urban areas. Collection of data and interpretation may be performed by pipeline companies themselves or, more usually, by independent specialists.

See also

Related Research Articles

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state.

<span class="mw-page-title-main">Corrosion</span> Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

<span class="mw-page-title-main">Galvanic anode</span> Main component of cathodic protection

A galvanic anode, or sacrificial anode, is the main component of a galvanic cathodic protection system used to protect buried or submerged metal structures from corrosion.

<span class="mw-page-title-main">Cathodic protection</span> Corrosion prevention technique

Cathodic protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded "sacrificial metal" to act as the anode. The sacrificial metal then corrodes instead of the protected metal. For structures such as long pipelines, where passive galvanic cathodic protection is not adequate, an external DC electrical power source is used to provide sufficient current.

<span class="mw-page-title-main">Electrophoretic deposition</span>

Electrophoretic deposition (EPD), is a term for a broad range of industrial processes which includes electrocoating, cathodic electrodeposition, anodic electrodeposition, and electrophoretic coating, or electrophoretic painting. A characteristic feature of this process is that colloidal particles suspended in a liquid medium migrate under the influence of an electric field (electrophoresis) and are deposited onto an electrode. All colloidal particles that can be used to form stable suspensions and that can carry a charge can be used in electrophoretic deposition. This includes materials such as polymers, pigments, dyes, ceramics and metals.

<span class="mw-page-title-main">Kelvin probe force microscope</span> Noncontact variant of atomic force microscopy

Kelvin probe force microscopy (KPFM), also known as surface potential microscopy, is a noncontact variant of atomic force microscopy (AFM). By raster scanning in the x,y plane the work function of the sample can be locally mapped for correlation with sample features. When there is little or no magnification, this approach can be described as using a scanning Kelvin probe (SKP). These techniques are predominantly used to measure corrosion and coatings.

A groundbed is an array of electrodes, installed in the ground to provide a low resistance electrical path to ground or earth. A groundbed is a component in an earthing system.

Fusion bonded epoxy coating, also known as fusion-bond epoxy powder coating and commonly referred to as FBE coating, is an epoxy-based powder coating that is widely used to protect steel pipe used in pipeline construction from corrosion. It is also commonly used to protect reinforcing bars and on a wide variety of piping connections, valves etc. FBE coatings are thermoset polymer coatings. They come under the category of protective coatings in paints and coating nomenclature. The name fusion-bond epoxy is due to resigning cross-link and the application method, which is different from a conventional paint. In 2020 the market size was quoted at 12 billion dollars.

Geomagnetically induced currents (GIC) are electrical currents induced at the Earth's surface by rapid changes in the geomagnetic field caused by space weather events. GICs can affect the normal operation of long electrical conductor systems such as electric transmission grids and buried pipelines. The geomagnetic disturbances which induce GICs include geomagnetic storms and substorms where the most severe disturbances occur at high geomagnetic latitudes.

Heat-shrinkable sleeve is a corrosion protective coating for pipelines in the form of a wraparound or tubular sleeve that is field-applied.

Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to manage corrosion. From a holistic perspective, corrosion is the phenomenon of metals returning to the state they are found in nature. The driving force that causes metals to corrode is a consequence of their temporary existence in metallic form. To produce metals starting from naturally occurring minerals and ores, it is necessary to provide a certain amount of energy, e.g. Iron ore in a blast furnace. It is therefore thermodynamically inevitable that these metals when exposed to various environments would revert to their state found in nature. Corrosion and corrosion engineering thus involves a study of chemical kinetics, thermodynamics, electrochemistry and materials science.

<span class="mw-page-title-main">Ductile iron pipe</span>

Ductile iron pipe is pipe made of ductile cast iron commonly used for potable water transmission and distribution. This type of pipe is a direct development of earlier cast iron pipe, which it has superseded. The ductile iron used to manufacture the pipe is characterized by the spheroidal or nodular nature of the graphite within the iron. Typically, the pipe is manufactured using centrifugal casting in metal or resin lined moulds. Protective internal linings and external coatings are often applied to ductile iron pipes to inhibit corrosion: the standard internal lining is cement mortar and standard external coatings include bonded zinc, asphalt or water-based paint. In highly corrosive environments loose polyethylene sleeving (LPS) to encase the pipe may also be used. Life expectancy of unprotected ductile iron pipes depends on the corrosiveness of soil present and tends to be shorter where soil is highly corrosive. However, a lifespan in excess of 100 years has been estimated for ductile iron pipelines installed using "evolved laying practices", including use of properly installed LPS. Studies of ductile iron pipe's environmental impact have differing findings regarding emissions and energy consumed. Ductile iron pipe manufactured in the United States has been certified as a sustainable product by the Institute for Market Transformation to Sustainability.

Technical Integrity Engineering is a term applied to the engineering disciplines associated with the design, assurance, and verification functions that ensure a product, process, or system meets its appropriate and intended requirements under stated operating conditions. Application of these disciplines minimizes the cost, schedule, technical, and legal risks of a program and improves the overall life cycle cost.

<span class="mw-page-title-main">Bipolar electrochemistry</span>

Bipolar electrochemistry is a phenomenon in electrochemistry based on the polarization of conducting objects in electric fields. Indeed, this polarization generates a potential difference between the two extremities of the substrate that is equal to the electric field value multiplied by the size of the object. If this potential difference is important enough, then redox reactions can be generated at the extremities of the object, oxidations will occur at one extremity coupled simultaneously to reductions at the other extremity. In a simple experimental setup consisting of a platinum wire in a weighing boat containing a pH indicator solution, a 30 V voltage across two electrodes will cause water reduction at one end of the wire and a pH increase and water oxidation at the anodic end and a pH decrease. The poles of the bipolar electrode also align themselves with the applied electric field.

A sacrificial metal is a metal used as a sacrificial anode in cathodic protection that corrodes to prevent a primary metal from corrosion or rusting. It may also be used for galvanization.

Corrosion in Ballast Tanks is the deterioration process where the surface of a ballast tank progresses from microblistering, to hydroscaletric electration, and finally to cracking of the tank steel itself.

A volatile corrosion inhibitor (VCI) is a material that protects metals from corrosion. V.VCI is also called Vacuum VCI meaning they have special properties of performance in vacuum as well as corrosion protection properties. Corrosion inhibitors are chemical compounds that can decrease the corrosion rate of a material, typically a metal or an alloy. NACE International Standard TM0208 defines volatile corrosion inhibitor (VCI) as a chemical substance that acts to reduce corrosion by a combination of volatilization from a VCI material, vapor transport in the atmosphere of an enclosed environment, and condensation onto surface in the space, including absorption, dissolution, and hydrophobic effects on metal surfaces, where the rate of corrosion of metal surfaces is thereby inhibited. They also called vapor-phase inhibitors, vapor-phase corrosion inhibitors, and vapor-transported corrosion inhibitors.

<span class="mw-page-title-main">Galvanic corrosion</span> Electrochemical process

Galvanic corrosion is an electrochemical process in which one metal corrodes preferentially when it is in electrical contact with another, in the presence of an electrolyte. A similar galvanic reaction is exploited in primary cells to generate a useful electrical voltage to power portable devices. This phenomenon is named after Italian physician Luigi Galvani (1737-1798).

Robotic non-destructive testing (NDT) is a method of inspection used to assess the structural integrity of petroleum, natural gas, and water installations. Crawler-based robotic tools are commonly used for in-line inspection (ILI) applications in pipelines that cannot be inspected using traditional intelligent pigging tools.

The Association for Materials Protection and Performance (AMPP), is a professional association focused on the protection of assets and performance of materials. AMPP was created when NACE International and SSPC the Society for Protective Coatings merged in 2021. AMPP is active in more than 130 countries and has more than 40,000 members. AMPP is headquartered in the U.S. with offices in Houston, Texas and Pittsburgh, Pennsylvania. Additional offices are located in the U.K., China, Malaysia, Brazil, and Saudi Arabia with a training center in Dubai.

References

  1. Roberge, Pierre R. (2008). Corrosion engineering: principles and practice. McGraw-Hill. p. 576. ISBN   978-0-07-148243-1.
  2. NACE TM0109-2009, Aboveground Survey Techniques for the Evaluation of Underground Pipeline Coating Condition, Section 6