Interrupter

Last updated
Golding Bird's original sketch of his interrupter circuit.
Description: The prongs at the end of the pivoted arm dip into mercury filled recesses. This completes a circuit which energises a coil around the iron pivot arm and functions as an electromagnet. The magnetic polarity is so arranged that a permanent magnet underneath the arm then repels the pivot arm and causes the circuit to break, but the prongs at the other end of the pivot arm then close an identical circuit at that end and the procedure repeats endlessly. The output of the interrupter is fed to an induction coil which greatly increases the voltage applied to the patient by transformer action. Golding Bird's interrupter.jpg
Golding Bird's original sketch of his interrupter circuit.
Description: The prongs at the end of the pivoted arm dip into mercury filled recesses. This completes a circuit which energises a coil around the iron pivot arm and functions as an electromagnet. The magnetic polarity is so arranged that a permanent magnet underneath the arm then repels the pivot arm and causes the circuit to break, but the prongs at the other end of the pivot arm then close an identical circuit at that end and the procedure repeats endlessly. The output of the interrupter is fed to an induction coil which greatly increases the voltage applied to the patient by transformer action.

An interrupter in electrical engineering is a device used to interrupt the flow of a steady direct current for the purpose of converting a steady current into a changing one. Frequently, the interrupter is used in conjunction with an inductor (coil of wire) to produce increased voltages either by a back emf effect or through transformer action. The largest industrial use of the interrupter was in the induction coil, the first transformer, which was used to produce high voltage pulses in scientific experiments and to power arc lamps, spark gap radio transmitters, and the first X-ray tubes, around the turn of the 20th century. Its largest use was the contact breaker or "points" in the distributor of the ignition system of gasoline engines, which served to periodically interrupt the current to the ignition coil producing high voltage pulses which create sparks in the spark plugs. It is still used in this application.

Contents

Medical use

Bird's interrupter

The physician Golding Bird designed his own interrupter circuit for delivering shocks to patients from a voltaic cell through an induction coil. Previously, the interrupter had been a mechanical device requiring the physician to manually turn a cog wheel, or else employ an assistant to do this. Bird wished to free his hands to better apply the electricity to the required part of the patient. His interrupter worked automatically by magnetic induction and achieved a switching rate of around 5 Hz (five times per second). [1] The faster the interrupter switches, the more frequently an electric shock is delivered to the patient and the aim is to make this as high as possible. [2]

Page's interrupter

A rather more cumbersome interrupter was constructed by the American Charles Page slightly earlier in 1838 but Bird's work was entirely independent. Although there is little in common between the two interrupter designs, Page takes the credit for being the first to use permanent magnets in an automatic interrupter circuit. Bird's (and Page's) interrupter had the medically disadvantageous feature that current was supplied in opposite directions during the make and break operations, although the current was substantially less during the make operation than the break (current is only supplied at all while the switch is dynamically changing). Treatment often required that current was supplied in one specified direction only.

Letheby's interrupter

A modified version of the interrupter was produced by Henry Letheby which could output only the make, or only the break currents by a mechanism consisting of two spoked wheels. Bird also produced a uni-directional interrupter using a mechanism we would now call split-rings. The date of Bird's design is uncertain but may predate Letheby's. Both designs suffered from the disadvantage that automatic operation was lost and the interrupter had to once again be hand-cranked. Nevertheless, this arrangement remained a cheaper option than electromagnetic generators for some time. [1] [3]

Other designs

Other early interrupters worked by clockwork mechanisms or (non-magnetic) reed switches operated by motion of the patient's limbs. One example of such a device is found in the Pulvermacher chain. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Electromagnetic coil</span> Electrical component

An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil. Electromagnetic coils are used in electrical engineering, in applications where electric currents interact with magnetic fields, in devices such as electric motors, generators, inductors, electromagnets, transformers, and sensor coils. Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external time-varying magnetic field through the interior of the coil generates an EMF (voltage) in the conductor.

<span class="mw-page-title-main">Transformer</span> Device to couple energy between circuits

A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.

<span class="mw-page-title-main">Tesla coil</span> Electrical resonant transformer circuit invented by Nikola Tesla

A Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high-frequency alternating-current electricity. Tesla experimented with a number of different configurations consisting of two, or sometimes three, coupled resonant electric circuits.

Timeline of electromagnetism and classical optics lists, within the history of electromagnetism, the associated theories, technology, and events.

<span class="mw-page-title-main">Electric generator</span> Device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.

<span class="mw-page-title-main">Alternator</span> Device converting mechanical into electrical energy

An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines.

<span class="mw-page-title-main">Induction coil</span> Type of electrical transformer

An induction coil or "spark coil" is a type of electrical transformer used to produce high-voltage pulses from a low-voltage direct current (DC) supply. To create the flux changes necessary to induce voltage in the secondary coil, the direct current in the primary coil is repeatedly interrupted by a vibrating mechanical contact called an interrupter. Invented in 1836 by the Irish-Catholic priest Nicholas Callan, with additional research by Charles Grafton Page and others, the induction coil was the first type of transformer. It was widely used in x-ray machines, spark-gap radio transmitters, arc lighting and quack medical electrotherapy devices from the 1880s to the 1920s. Today its only common use is as the ignition coils in internal combustion engines and in physics education to demonstrate induction.

<span class="mw-page-title-main">Nicholas Callan</span> Irish priest, scientist and professor

Nicholas Joseph Callan was an Irish Catholic priest and physicist. He was professor of natural philosophy at Maynooth College in County Kildare from 1834, and is best known for his work on the induction coil.

<span class="mw-page-title-main">Oudin coil</span> Resonant transformer circuit

An Oudin coil, also called an Oudin oscillator or Oudin resonator, is a resonant transformer circuit that generates very high voltage, high frequency alternating current (AC) electricity at low current levels, used in the obsolete forms of electrotherapy around the turn of the 20th century. It is very similar to the Tesla coil, with the difference being that the Oudin coil was connected as an autotransformer. It was invented in 1893 by French physician Paul Marie Oudin as a modification of physician Jacques Arsene d'Arsonval's electrotherapy equipment and used in medical diathermy therapy as well as quack medicine until perhaps 1940. The high voltage output terminal of the coil was connected to an insulated handheld electrode which produced luminous brush discharges, which were applied to the patient's body to treat various medical conditions in electrotherapy.

<span class="mw-page-title-main">Electrotherapy</span> Use of electricity for medical purposes

Electrotherapy is the use of electrical energy as a medical treatment. In medicine, the term electrotherapy can apply to a variety of treatments, including the use of electrical devices such as deep brain stimulators for neurological disease. The term has also been applied specifically to the use of electric current to speed wound healing. Additionally, the term "electrotherapy" or "electromagnetic therapy" has also been applied to a range of alternative medical devices and treatments.

<span class="mw-page-title-main">Ignition coil</span> Automobile fuel ignition system component

An ignition coil is used in the ignition system of a spark-ignition engine to transform the battery voltage to the much higher voltages required to operate the spark plug(s). The spark plugs then use this burst of high-voltage electricity to ignite the air-fuel mixture.

<span class="mw-page-title-main">Contactor</span> Electronic circuit element serving as a switch

A contactor is an electrically controlled switch used for switching an electrical power circuit. A contactor is typically controlled by a circuit which has a much lower power level than the switched circuit, such as a 24-volt coil electromagnet controlling a 230-volt motor switch.

<span class="mw-page-title-main">AC motor</span> Electric motor driven by an AC electrical input

An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.

<span class="mw-page-title-main">Dynamo</span> Electrical generator that produces direct current with the use of a commutator

A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.

<span class="mw-page-title-main">Henry Letheby</span>

Henry Letheby was an English analytical chemist and public health officer.

<span class="mw-page-title-main">Charles Grafton Page</span> American scientist (1812–1866)

Charles Grafton Page was an American electrical experimenter and inventor, physician, patent examiner, patent advocate, and professor of chemistry.

<span class="mw-page-title-main">Golding Bird</span> British medical doctor

Golding Bird was a British medical doctor and a Fellow of the Royal College of Physicians. He became a great authority on kidney diseases and published a comprehensive paper on urinary deposits in 1844. He was also notable for his work in related sciences, especially the medical uses of electricity and electrochemistry. From 1836, he lectured at Guy's Hospital, a well-known teaching hospital in London and now part of King's College London, and published a popular textbook on science for medical students called Elements of Natural Philosophy.

<span class="mw-page-title-main">Pulvermacher's chain</span> Battery for quack medical applications

The Pulvermacher chain, or in full as it was sold the Pulvermacher hydro-electric chain, was a type of voltaic battery sold in the second half of the 19th century for medical applications. Its chief market was amongst the numerous quack practitioners who were taking advantage of the popularity of the relatively new treatment of electrotherapy, or "electrification" as it was then known. Its unique selling point was its construction of numerous linked cells, rendering it mechanically flexible. A variant intended to be worn wrapped on parts of the body for long periods was known as Pulvermacher's galvanic chain or electric belt.

<span class="mw-page-title-main">Electric bath (electrotherapy)</span> 19th-century medical treatment

An electric bath is a 19th-century medical treatment in which high-voltage electrical apparatus was used for electrifying patients by causing an electric charge to build up on their bodies. In the US this process was known as Franklinization after Benjamin Franklin. The process became widely known after Franklin described it in the mid-18th century, but after that it was mostly practiced by quacks. Golding Bird brought it into the mainstream at Guy's Hospital in the mid-19th century and it fell into disuse in the early 20th century.

<span class="mw-page-title-main">Trembler coil</span> Part of early car ignition systems

A trembler coil, buzz coil or vibrator coil is a type of high-voltage ignition coil used in the ignition system of early automobiles, most notably the Benz Patent-Motorwagen and the Ford Model T. Its distinguishing feature is a vibrating magnetically-activated contact called a trembler or interrupter, which breaks the primary current, generating multiple sparks during each cylinder's power stroke. Trembler coils were first used on the 1886 Benz automobile, and were used on the Model T until 1927.

References

  1. 1 2 3 Bird (1838), pp. 18–22
  2. Coley, p.368
    Morus, pp. 250–251
  3. Morus, pp. 250–251
    Bird, Lectures, pp. 119–122
    Letheby, pp. 858–859
  4. Lardner, p.289
    Pulvermacher, p.2

Bibliography