DRE-i with enhanced privacy

Last updated


Direct Recording Electronic with Integrity and Enforced Privacy (DRE-ip) is an End-to-End (E2E) verifiable e-voting system without involving any tallying authorities, proposed by Siamak Shahandashti and Feng Hao in 2016. [1] It improves a previous DRE-i system by using a real-time computation strategy and providing enhanced privacy. A touch-screen based prototype of the system was trialed in the Gateshead Civic Centre polling station on 2 May 2019 during the 2019 United Kingdom local elections with positive voter feedback. [2] A proposal that includes DRE-ip as a solution for large-scale elections was ranked 3rd place in the 2016 Economist Cybersecurity Challenge jointly organized by The Economist and Kaspersky Lab. [3]

Contents

Protocol

The DRE-ip protocol is applicable to both onsite polling station voting and remote Internet voting implementations. In the specification below, it is described for polling station voting. The protocol consists of three stages: setup, voting and tallying.

Setup

Let and be two large primes, where . is a subgroup of of prime order . Let and be two random generators of , whose discrete logarithm relationship is unknown. This can be realized by choosing a non-identity element in as and computing based on applying a one-way hash function with the inclusion of election specific information such as the date, election title and questions as the input. [4] All modulo operations are performed with respect to the modulus . Alternatively, the protocol can be implemented using an elliptic curve, while the protocol specification remains unchanged.

Voting

For simplicity, the voting process is described for a single-candidate (Yes/No) election held in a polling station using a touch-screen DRE machine. There are standard ways to extend a single candidate election to support multiple candidates, e.g., providing a Yes/No selection for each of the candidates or using different encoded values for different candidates as described by Baudron et al. [5]

After being authenticated at a polling station, a voter obtains an authentication credential, which can be a random passcode or a smartcard. The authentication credential allows the voter to log onto a DRE machine in a private voting booth and cast a vote, but the machine does not know the voter's real identity.

A voter casts a vote on a DRE machine in two steps. First, he is presented with "Yes" and "No" options for the displayed candidate on the screen. Once the voter makes a choice on the touch screen, the DRE prints the first part of the receipt, containing where is a unique ballot index number, is a number chosen uniformly at random from , and is either 1 or 0 (corresponding to "Yes" and "No" respectively). The cipher text also comes with a zero knowledge proof to prove that and are well-formed. This zero knowledge proof can be realized by using a technique due to Ronald Cramer, Ivan Damgård and Berry Schoenmakers (also called the CDS technique). [6] The interactive CDS technique can be made non-interactive by applying Fiat-Shamir heuristics. [7]

In the second step, the voter has the option to either confirm or cancel the selection. In case of "confirm", the DRE updates the aggregated values and in memory as below, deletes individual values and , and marks the ballot as "confirmed" on the receipt.

.

In case of “cancel”, the DRE reveals and on the receipt, marks the ballot as "cancelled" and prompts the voter to choose again. The voter can check if the printed matches his previous selection and raise a dispute if it does not. The voter can cancel as many ballots as he wishes but can only cast one confirmed ballot. The canceling option allows the voter to verify if the data printed on the receipt during the first step corresponds to the correct encryption of the voter's choice, hence ensuring the vote is "cast as intended". This follows the same approach of voter-initiated auditing as proposed by Joshua Benaloh. [8] However, in DRE-ip, voter-initiated auditing is realized without requiring the voter to understand cryptography (the voter merely needs to check whether the printed plaintext is correct).

After voting is finished, the voter leaves the voting booth with one receipt for the confirmed ballot and zero or more receipts for the canceled ballots. The same data printed on the receipts are also published on a mirrored public election website (also known as a public bulletin board) with a digital signature to prove the data authenticity. To ensure the vote is "recorded as cast", the voter just needs to check if the same receipt has been published on the election website.

Tallying

Once the election has finished, the DRE publishes the final values and on the election website, in addition to all the receipts. Anyone will be able to verify the tallying integrity by checking the published audit data, in particular, whether the following two equations hold. This ensures that all votes are "tallied as recorded", which together with the earlier assurance on "cast as intended" and "recorded as cast" guarantees that the entire voting process is "end-to-end verifiable".

An "end-to-end verifiable" voting system is also said to be "software independent", a phrase coined by Ron Rivest. [9] The DRE-ip system differs from other E2E verifiable voting systems in that it does not require tallying authorities, hence the election management is much simpler.

and .

Real-world trial

Counts of voter preferences in the Gateshead e-voting Trial Voter-preferences-300.jpg
Counts of voter preferences in the Gateshead e-voting Trial

A touch-screen based prototype of DRE-ip had been implemented and trialed in a polling station in Gateshead on 2 May 2019 during the 2019 United Kingdom local elections. [2] [10] During the trial, voters first voted as normal using paper ballots. Upon exiting the polling station, they were invited to participate in a voluntary trial of using a DRE-ip e-voting system for a dummy election. On average, it took each voter only 33 seconds to cast a vote on the DRE-ip system. [4]

As part of the trial, voters were asked to compare their voting experiences of using paper ballots and the DRE-ip e-voting system, and indicate which system they would prefer. Among the participating voters, 11 chose "strongly prefer paper", 9 chose "prefer paper", 16 chose "neutral", 23 chose "prefer e-voting", and 32 chose "strongly prefer e-voting". [4]

Related Research Articles

The Condorcet paradox in social choice theory is a situation noted by the Marquis de Condorcet in the late 18th century, in which collective preferences can be cyclic, even if the preferences of individual voters are not cyclic. This is paradoxical, because it means that majority wishes can be in conflict with each other: Suppose majorities prefer, for example, candidate A over B, B over C, and yet C over A. When this occurs, it is because the conflicting majorities are each made up of different groups of individuals.

A ballot is a device used to cast votes in an election and may be found as a piece of paper or a small ball used in voting. It was originally a small ball used to record decisions made by voters in Italy around the 16th century.

The independence of irrelevant alternatives (IIA), also known as binary independence or the independence axiom, is an axiom of decision theory and various social sciences. The term is used in different connotation in several contexts. Although it always attempts to provide an account of rational individual behavior or aggregation of individual preferences, the exact formulation differs widely in both language and exact content.

A voting machine is a machine used to record votes in an election without paper. The first voting machines were mechanical but it is increasingly more common to use electronic voting machines. Traditionally, a voting machine has been defined by its mechanism, and whether the system tallies votes at each voting location, or centrally. Voting machines should not be confused with tabulating machines, which count votes done by paper ballot.

Electronic voting is voting that uses electronic means to either aid or take care of casting and counting ballots.

<span class="mw-page-title-main">Electronic voting in India</span> Component of Indian electoral system

Electronic voting is the standard means of conducting elections using Electronic Voting Machines (EVMs) in India. The system was developed and tested by the state-owned Electronics Corporation of India and Bharat Electronics in the 1990s. They were introduced in Indian elections between 1998 and 2001, in a phased manner. Prior to the introduction of electronic voting, India used paper ballots and manual counting. The paper ballots method was widely criticised because of fraudulent voting and booth capturing, where party loyalists captured booths and stuffed them with pre-filled fake ballots. The printed paper ballots were also more expensive, requiring substantial post-voting resources to count hundreds of millions of individual ballots. Embedded EVM features such as "electronically limiting the rate of casting votes to five per minute", a security "lock-close" feature, an electronic database of "voting signatures and thumb impressions" to confirm the identity of the voter, conducting elections in phases over several weeks while deploying extensive security personnel at each booth have helped reduce electoral fraud and abuse, eliminate booth capturing and create more competitive and fairer elections. Indian EVMs are stand-alone machines built with Write once read many memory. The EVMs are produced with secure manufacturing practices, and by design, are self-contained, battery-powered and lack any networking capability. They do not have any wireless or wired internet components and interface. The M3 version of the EVMs includes the VVPAT system.

An absentee ballot is a vote cast by someone who is unable or unwilling to attend the official polling station to which the voter is normally allocated. Methods include voting at a different location, postal voting, proxy voting and online voting. Increasing the ease of access to absentee ballots is seen by many as one way to improve voter turnout through convenience voting, though some countries require that a valid reason, such as infirmity or travel, be given before a voter can participate in an absentee ballot. Early voting overlaps with absentee voting. Early voting includes votes cast before the official election day(s), by mail, online or in-person at voting centers which are open for the purpose. Some places call early in-person voting a form of "absentee" voting, since voters are absent from the polling place on election day.

Voter verifiable paper audit trail (VVPAT) or verified paper record (VPR) is a method of providing feedback to voters using a ballotless voting system. A VVPAT is intended as an independent verification system for voting machines designed to allow voters to verify that their vote was cast correctly, to detect possible election fraud or malfunction, and to provide a means to audit the stored electronic results. It contains the name of the candidate and symbol of the party/individual candidate. While it has gained in use in the United States compared with ballotless voting systems without it, it looks unlikely to overtake hand-marked ballots.

A DRE voting machine, or direct-recording electronic voting machine, records votes by means of a ballot display provided with mechanical or electro-optical components that can be activated by the voter. These are typically buttons or a touchscreen; and they process data using a computer program to record voting data and ballot images in memory components. After the election, it produces a tabulation of the voting data stored in a removable memory component and as printed copy. The system may also provide a means for transmitting individual ballots or vote totals to a central location for consolidating and reporting results from precincts at the central location. The device started to be massively used in 1996 in Brazil where 100% of the elections voting system is carried out using machines.

The single transferable vote (STV) is a proportional representation voting system that elects multiple winners based on ranked voting. Under STV, an elector's vote is initially allocated to his or her most-preferred candidate. Candidates are elected (winners) if their vote tally reaches quota. After this 1st Count, if seats still remain open, surplus votes are transferred from winners to remaining candidates (hopefuls) according to the surplus ballots' next usable back-up preference. if no surplus votes have to be transferred, then the least-popular candidate is eliminated so the vote has chance to be placed on a candidate who can use it.

In cryptography, a secret sharing scheme is verifiable if auxiliary information is included that allows players to verify their shares as consistent. More formally, verifiable secret sharing ensures that even if the dealer is malicious there is a well-defined secret that the players can later reconstruct. The concept of verifiable secret sharing (VSS) was first introduced in 1985 by Benny Chor, Shafi Goldwasser, Silvio Micali and Baruch Awerbuch.

Electronic voting in Estonia gained popularity in 2001 with the "e-minded" coalition government. In 2005, it became the first nation to hold legally binding general elections over the Internet with their pilot project for municipal elections. Estonian election officials declared the electronic voting system a success and found that it withstood the test of real-world use.

<span class="mw-page-title-main">ThreeBallot</span> End-to-end auditable anonymous voting system

ThreeBallot is a voting protocol invented by Ron Rivest in 2006. ThreeBallot is an end-to-end (E2E) auditable voting system that can in principle be implemented on paper. The goal in its design was to provide some of the benefits of a cryptographic voting system without using cryptographic keys.

Punchscan is an optical scan vote counting system invented by cryptographer David Chaum. Punchscan is designed to offer integrity, privacy, and transparency. The system is voter-verifiable, provides an end-to-end (E2E) audit mechanism, and issues a ballot receipt to each voter. The system won grand prize at the 2007 University Voting Systems Competition.

End-to-end auditable or end-to-end voter verifiable (E2E) systems are voting systems with stringent integrity properties and strong tamper resistance. E2E systems often employ cryptographic methods to craft receipts that allow voters to verify that their votes were counted as cast, without revealing which candidates were voted for. As such, these systems are sometimes referred to as receipt-based systems.

Prêt à Voter is an E2E voting system devised by Peter Ryan of the University of Luxembourg. It aims to provide guarantees of accuracy of the count and ballot privacy that are independent of software, hardware etc. Assurance of accuracy flows from maximal transparency of the process, consistent with maintaining ballot privacy. In particular, Prêt à Voter enables voters to confirm that their vote is accurately included in the count whilst avoiding dangers of coercion or vote buying.

In cryptography, a secret sharing scheme is publicly verifiable (PVSS) if it is a verifiable secret sharing scheme and if any party can verify the validity of the shares distributed by the dealer.

In verifiable secret sharing (VSS) the object is to resist malicious players, such as
(i) a dealer sending incorrect shares to some or all of the participants, and
(ii) participants submitting incorrect shares during the reconstruction protocol,cf. [CGMA85].
In publicly verifiable secret sharing (PVSS), as introduced by Stadler [Sta96], it is an explicit goal that not just the participants can verify their own shares, but that anybody can verify that the participants received correct shares. Hence, it is explicitly required that (i) can be verified publicly.

Scantegrity is a security enhancement for optical scan voting systems, providing such systems with end-to-end (E2E) verifiability of election results. It uses confirmation codes to allow a voter to prove to themselves that their ballot is included unmodified in the final tally. The codes are privacy-preserving and offer no proof of which candidate a voter voted for. Receipts can be safely shown without compromising ballot secrecy.

<span class="mw-page-title-main">Hare–Clark electoral system</span> Proportional-representation voting system

Hare-Clark is a type of single transferable vote electoral system of proportional representation used for elections in Tasmania and the Australian Capital Territory. The method for the distribution of preferences is similar to other voting systems in Australia, such as for the Australian Senate.

In cryptography, the open vote network is a secure multi-party computation protocol to compute the boolean-count function: namely, given a set of binary values 0/1 in the input, compute the total count of ones without revealing each individual value. This protocol was proposed by Feng Hao, Peter Ryan, and Piotr Zieliński in 2010. It extends Hao and Zieliński's anonymous veto network protocol by allowing each participant to count the number of veto votes while preserving the anonymity of those who have voted. The protocol can be generalized to support a wider range of inputs beyond just the binary values 0 and 1.

References

  1. Shahandashti, Siamak F.; Hao, Feng (2016). "DRE-ip: A Verifiable E-Voting Scheme Without Tallying Authorities" (PDF). Computer Security – ESORICS 2016. Lecture Notes in Computer Science. Vol. 9879. pp. 223–240. doi:10.1007/978-3-319-45741-3_12. ISBN   978-3-319-45740-6.
  2. 1 2 Wakefield, Jane (2 May 2019). "E-voting trialled in local elections". BBC News.
  3. Esposito, Jeffrey (8 December 2016). "Can Blockchain Technology Secure Digital Voting Systems?".
  4. 1 2 3 Hao, Feng; Wang, Shen; Bag, Samiran; Procter, Rob; Shahandashti, Siamak F; Mehrnezhad, Maryam; Toreini, Ehsan; Metere, Roberto; Liu, Lana (2020). "End-to-End Verifiable E-Voting Trial for Polling Station Voting" (PDF). IEEE Security & Privacy. 18 (6): 6–13. doi:10.1109/MSEC.2020.3002728. S2CID   219616040.
  5. Baudron, Olivier; Fouque, Pierre-Alain; Pointcheval, David; Stern, Jacques; Poupard, Guillaume (1 August 2001). "Practical multi-candidate election system". Proceedings of the twentieth annual ACM symposium on Principles of distributed computing (PDF). Association for Computing Machinery. pp. 274–283. doi:10.1145/383962.384044. ISBN   1581133839. S2CID   1702409.
  6. Cramer, Ronald; Damgård, Ivan; Schoenmakers, Berry (1994). "Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols". Advances in Cryptology — CRYPTO '94. Lecture Notes in Computer Science. Vol. 839. Springer. pp. 174–187. doi:10.1007/3-540-48658-5_19. ISBN   978-3-540-58333-2. S2CID   1556546.
  7. Fiat, Amos; Shamir, Adi (1987). "How to Prove Yourself: Practical Solutions to Identification and Signature Problems". Advances in Cryptology — CRYPTO' 86. Lecture Notes in Computer Science. Vol. 263. Springer. pp. 186–194. doi: 10.1007/3-540-47721-7_12 . ISBN   978-3-540-18047-0.
  8. Benaloh, Josh (6 August 2007). "Ballot casting assurance via voter-initiated poll station auditing". Proceedings of the USENIX Workshop on Accurate Electronic Voting Technology. USENIX Association: 14.
  9. Rivest, Ronald L (28 October 2008). "On the notion of 'software independence' in voting systems". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 366 (1881): 3759–3767. Bibcode:2008RSPTA.366.3759R. doi: 10.1098/rsta.2008.0149 . PMID   18684694.
  10. "Gateshead to host prototype e-voting trial - Gateshead Council". www.gateshead.gov.uk.