Daimler-Benz DB 007

Last updated
DB 007
TypeAxial flow turbofan
National origin Germany
Manufacturer Daimler-Benz
Designer Karl Leist
First run27 May 1943
Number builtat least 1

The Daimler-Benz DB 007 (RLM (Reichsluftfahrtministerium - Reich Air Ministry) designation ZTL 109-007, company designation ZTL6001) was an early German jet engine design stemming from design work carried out by Karl Leist from 1939. This was a complex design featuring contra-rotating stages and a bypass fan, making it one of the earliest turbofan designs to be produced. The end result of the design work was built as the DB 007 and began testing on a test-bed on 27 May 1943. Due to the expected low performance, complexity and the good results achieved by much simpler designs, work was halted on the DB 007 in May 1944 by order of the RLM.

Contents

Design and development

After initial studies on gas turbines in the late 1920s, Daimler-Benz lost interest in them until 1939 with the arrival of Karl Leist. Work began immediately on the DB 670 (aka ZTL 5000), a ducted fan with compressor feeding an afterburner, driven by a DB 604 X-24 engine delivering 1,864 kW (2,500 hp). At a weight of 3,748 lb (1,700 kg), with an expected thrust of 6 kN (1,323 lbf) at a speed of 900 km/h (559 mph) and altitude of 19,685 ft (6,000 m) the DB 670 was abandoned due to the very low power/weight ratio. After a brief interlude studying pulse-jets Leist began work on what was to become the DB007. [1]

Previous design efforts in Germany had investigated ducted fans (turbofans / by-pass turbojets) and contra-rotating compressor spools, but Leist incorporated both into the ZTL6000 (precursor to the ZTL 6001 / DB 007), resulting in a very complex design. Another novel feature was a turbine which passed alternately through the combustion chamber efflux and cooling air tapped from the bypass flow. By the Summer of 1942 design goals had been revised down and the new engine was given the designations ZTL6001 (company) and DB 007 / ZTL 109-007 (RLM), ZTL being an acronym for Zweikreiststurbinen-Luftstrahltriebwerk (two-circuit turbojet engine). [1]

Air entered the engine through a conventional air intake, flow splitting after the initial guide vanes to the compressor inside and the ducted fan outside, with a by-pass ratio of approximately 2.45:1. The compressor consisted of seventeen stages of blading, eight carried on the inner drum, rotating at full engine speed, and nine on the outer drum which rotated in the opposite direction at 0.5:1 engine speed. Although extremely complicated mechanically, a compressor efficiency of 80% was expected with a very credible pressure ratio of 8:1. [1] For comparison, typical engines of the era offered pressure ratios on the order of 3.5:1.

Further complication arose from the ducted fan which consisted of three stages of blading attached to the outside of the rotating compressor casing, with stators attached to the inside of the engine outer casing. Calculated efficiency of the fan section was 84%. [1]

Air from the compressor passed to the four linked tubular combustion chambers, spaced evenly around the circumference with gaps to allow cool bypass air tapped from the by-pass duct to cool the turbine directly. Although this resulted in relatively poor turbine efficiency, at 74%, the cooling allowed a far higher Turbine Inlet Temperature (TIT) increasing the overall efficiency of combustion. [1]

The turbine consisted of hollow nickel steel blading on a forged steel turbine wheel which drove the compressor via a hollow shaft and flexible coupling. the inner compressor drum was driven directly but a reduction gearbox drove the outer drum at half speed. [1]

Structural materials were mainly cast aluminium alloys forward of the combustion chamber and welded sheet steel from the combustion chambers aft. [1]

Operational history

Only bench testing had been achieved before the program was cancelled in May 1944. [1]

Specifications (DB 007 / ZTL 6001)

Data from [2]

General characteristics

Components

Performance

See also

Related lists

Notes

  1. 1 2 3 4 5 6 7 8 Kay, p.
  2. Wilkinson, Paul H. (1946). Aircraft Engines of the world 1946. London: Sir Isaac Pitman & Sons. pp. 294–297.

Bibliography

Related Research Articles

<span class="mw-page-title-main">Jet engine</span> Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, or pulse jet. In general, jet engines are internal combustion engines.

<span class="mw-page-title-main">Turbofan</span> Airbreathing jet engine designed to provide thrust by driving a fan

The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the turbo portion refers to a gas turbine engine which achieves mechanical energy from combustion, and the fan, a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

<span class="mw-page-title-main">Aircraft engine</span> Engine designed for use in powered aircraft

An aircraft engine, often referred to as an aero engine, is the power component of an aircraft propulsion system. Most aircraft engines are either piston engines or gas turbines, although a few have been rocket powered and in recent years many small UAVs have used electric motors.

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Afterburner</span> Adds additional thrust to an engine at the cost of increased fuel consumption

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption.

<span class="mw-page-title-main">Bypass ratio</span> Proportion of ducted compared to combusted air in a turbofan engine

The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.

<span class="mw-page-title-main">Rolls-Royce Conway</span> 1950s British turbofan aircraft engine family

The Rolls-Royce RB.80 Conway was the first turbofan engine to enter service. Development started at Rolls-Royce in the 1940s, but the design was used only briefly, in the late 1950s and early 1960s, before other turbofan designs replaced it. However, the Conway engine was used in versions of the Handley Page Victor, Vickers VC10, Boeing 707-420 and Douglas DC-8-40. The name "Conway" is the English spelling of the River Conwy, in Wales, in keeping with Rolls' use of river names for gas turbine engines.

<span class="mw-page-title-main">General Electric TF39</span> Turbofan aircraft engine

The General Electric TF39 was a high-bypass turbofan engine that was developed to power the Lockheed C-5 Galaxy. The TF39 was the first high-power, high-bypass jet engine developed. The TF39 was further developed into the CF6 series of engines, and formed the basis of the LM2500 and LM6000 marine and industrial gas turbine. On September 7, 2017, the last active C-5A powered with TF39 engines made its final flight to Davis-Monthan Air Force Base for retirement. The TF39 was effectively retired, and all remaining active C-5 Galaxys are now powered by F138 engines.

This article outlines the important developments in the history of the development of the air-breathing (duct) jet engine. Although the most common type, the gas turbine powered jet engine, was certainly a 20th-century invention, many of the needed advances in theory and technology leading to this invention were made well before this time.

<span class="mw-page-title-main">Metropolitan-Vickers F.2</span> Early turbojet engine

The Metropolitan-Vickers F.2 is an early turbojet engine and the first British design to be based on an axial-flow compressor. It was an extremely advanced design for the era, using a nine-stage axial compressor, annular combustor, and a two-stage turbine.

A compressor map is a chart which shows the performance of a turbomachinery compressor. This type of compressor is used in gas turbine engines, for supercharging reciprocating engines and for industrial processes, where it is known as a dynamic compressor. A map is created from compressor rig test results or predicted by a special computer program. Alternatively the map of a similar compressor can be suitably scaled. This article is an overview of compressor maps and their different applications and also has detailed explanations of maps for a fan and intermediate and high-pressure compressors from a three-shaft aero-engine as specific examples.

<span class="mw-page-title-main">Heinkel HeS 3</span>

The Heinkel HeS 3 was the world's first operational jet engine to power an aircraft. Designed by Hans von Ohain while working at Heinkel, the engine first flew as the primary power of the Heinkel He 178, piloted by Erich Warsitz on 27 August 1939. Although successful, the engine had too little thrust to be really useful, and work started on the more powerful Heinkel HeS 8 as their first production design.

<span class="mw-page-title-main">Heinkel HeS 8</span>

The Heinkel HeS 8 was an early jet engine designed by Hans von Ohain while working at Heinkel. It was the first jet engine to be financially supported by the RLM, bearing the official name 109-001. Had development continued it would have been known as the Heinkel 001, but it does not appear this was used in practice.

<span class="mw-page-title-main">General Electric YF120</span> American fighter variable-cycle turbofan engine

The General Electric YF120, internally designated as GE37, was a variable cycle afterburning turbofan engine designed by General Electric Aircraft Engines in the late 1980s and early 1990s for the United States Air Force's Advanced Tactical Fighter (ATF) program. It was designed to produce maximum thrust in the 35,000 lbf (156 kN) class. Prototype engines were installed in the two competing technology demonstrator aircraft, the Lockheed YF-22 and Northrop YF-23.

<span class="mw-page-title-main">Gas turbine engine compressors</span>

As the name suggests, gas turbine engine compressors provide the compression part of the gas turbine engine thermodynamic cycle. There are three basic categories of gas turbine engine compressor: axial compressor, centrifugal compressor and mixed flow compressor. A fourth, unusual, type is the free-piston gas generator, which combines the functions of compressor and combustion chamber in one unit.

<span class="mw-page-title-main">CFE CFE738</span>

The CFE CFE738 is a small turbofan engine aimed at the business/commuter jet market manufactured by the CFE Company, and is used on the Dassault Falcon 2000.

<span class="mw-page-title-main">Components of jet engines</span> Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

<span class="mw-page-title-main">Volvo RM8</span>

The Volvo RM8 is a low-bypass afterburning turbofan jet engine developed for the Saab 37 Viggen fighter. An augmented bypass engine was required to give both better fuel consumption at cruise speeds and higher thrust boosting for its short take-off requirement than would be possible using a turbojet. In 1962, the civil Pratt & Whitney JT8D engine, as used for airliners such as the Boeing 727, was chosen as the only engine available which could be modified to meet the Viggen requirements. The RM8 was a licensed-built version of the JT8D, but extensively modified for supersonic speeds, with a Swedish-designed afterburner, and was produced by Svenska Flygmotor.

An airbreathing jet engine is a jet engine that ejects a propelling (reaction) jet of hot exhaust gases after first taking in atmospheric air, followed by compression, heating and expansion back to atmospheric pressure through a nozzle. Alternatively the reaction jet may include a cold jet of ducted bypass air which has been compressed by a fan before returning to atmospheric pressure through an additional nozzle. These engines are gas turbine engines. Engines using only ram for the compression process, and no turbomachinery, are the ramjet and pulsejet.

The Packard XJ49 was the first U.S. designed turbofan aircraft engine, and was developed by the Packard Motor Co. in the 1940s.