Dam safety system

Last updated

Dam safety systems are used to monitor the state of dams, including external physical threats to the dams, and issuing emergency warnings at various degrees of automation. This includes the use of differential GPS and SAR remote sensing to monitor the risks imposed by landslides and subsidence. For large dams, seismographs are used to detect reservoir-induced seismicity that could threaten the stability of the dam. [1] The output of these systems can provide warning to the local population ahead of a potential collapse.

Contents

Particular applications

Ukraine

The monitoring and warning system safeguarding the Kyiv Reservoir dam is complicated enough to include protection from a space object impact. [2]

Italy

The dam monitoring system of Enel green Power [3] in the Riolunato Dam controls all of the dam's important parameters. Optical and physical alignment systems are installed to control any movement of the land under and around the dam. The dam monitoring system checks the level of the water because this creates different pressures on the dam, also in relation to the air and water temperature. All these parameters are controlled and compared with the deformation and stress applied on the structure of the dam, measured with extensimeter, pendulum, reverse pendulum, piezometer, etc. The dam monitoring system continuously stores and analyzes all the dam parameters, creating 5 typologies of alarms. The dam monitoring system sets different levels of alarms corresponding to specific risks, like a reduction of lake water levels, and communicates risks with a network of all dam control systems. When the level of risk increases, the monitoring system activates alarms to close roads or bridges, and eventually alerts people living in nearby villages. All data is continuously sent from the dam monitoring system to the network dam control system, where specialist engineers can make decisions regarding the emergency situation. The Riolunato dam monitoring local system software is developed from AuCo Solutions. [4]

United States

Dam safety systems became a focus of multi-agency regulations during the U.S. Army Corps of Engineers construction of large flood control and hydro-electric power generation projects. To help benchmark proven practices, the Association of State Dam Safety Officials (ASDSO) formed a national non-profit organization of state and federal dam safety regulators, dam owners and operators, engineering consultants, manufacturers and suppliers, academia, contractors and others interested in dams safety. More recently public safety concerns were addressed by the Indian Dams Safety Act of 1992 during hearings before the Select Committee on Indian Affairs, United States Senate, 102nd Congress, second session, on S. 2617. The purpose was to provide for the maintenance of dams located on Indian lands in New Mexico by the Bureau of Indian Affairs through contracts with the Indian tribes. (August 4, 1992 in Washington, D.C.)

The ASDSO Conference Proceedings paper by Gary R. Holtzhausen (1991) describes the effective use of tiltmeters with remote sensing to provide reliable low-cost early warning of impending structural failures.

The ASDSO Conference Proceedings paper by Barry K. Meyers (2002) describes two case studies using failure modes analysis together with a variety of automated instrumentation to provide early warnings at White River Project owned by Puget Sound Energy as well as a case study of the Silver Creek Dam near Silverton OR. [5]

See also

Related Research Articles

Instrumentation is a collective term for measuring instruments, used for indicating, measuring, and recording physical quantities. It is also a field of study about the art and science about making measurement instruments, involving the related areas of metrology, automation, and control theory. The term has its origins in the art and science of scientific instrument-making.

SCADA is a control system architecture comprising computers, networked data communications and graphical user interfaces for high-level supervision of machines and processes. It also covers sensors and other devices, such as programmable logic controllers, which interface with process plant or machinery.

<span class="mw-page-title-main">Cleveland Dam</span> Dam in British Columbia, Canada

The Cleveland Dam is a 91-metre high (299 ft) concrete dam at the head of the Capilano River in Upper Capilano, North Vancouver, British Columbia, Canada that holds back Capilano Lake, also known as Capilano reservoir. Part of the Capilano River Regional Park, it stores a portion of the Lower Mainland's drinking water. It captures water from one of the three Metro Vancouver watersheds. Construction was started in 1951 and completed in 1954.

<span class="mw-page-title-main">Advanced driver-assistance system</span> Electronic systems that help a vehicle driver while driving or parking

Advanced driver-assistance systems (ADAS) are technologies that assist drivers with the safe operation of a vehicle. Through a human-machine interface, ADAS increase car and road safety. ADAS use automated technology, such as sensors and cameras, to detect nearby obstacles or driver errors, and respond accordingly. ADAS can enable various levels of autonomous driving.

Induced seismicity is typically earthquakes and tremors that are caused by human activity that alters the stresses and strains on Earth's crust. Most induced seismicity is of a low magnitude. A few sites regularly have larger quakes, such as The Geysers geothermal plant in California which averaged two M4 events and 15 M3 events every year from 2004 to 2009. The Human-Induced Earthquake Database (HiQuake) documents all reported cases of induced seismicity proposed on scientific grounds and is the most complete compilation of its kind.

<span class="mw-page-title-main">Spillway</span> Structure for controlled release of flows from a dam or levee

A spillway is a structure used to provide the controlled release of water downstream from a dam or levee, typically into the riverbed of the dammed river itself. In the United Kingdom, they may be known as overflow channels. Spillways ensure that water does not damage parts of the structure not designed to convey water.

<span class="mw-page-title-main">Security alarm</span> System that detects unauthorised entry

A security alarm is a system designed to detect intrusions, such as unauthorized entry, into a building or other areas, such as a home or school. Security alarms protect against burglary (theft) or property damage, as well as against intruders. Examples include personal systems, neighborhood security alerts, car alarms, and prison alarms.

Earthquake engineering is an interdisciplinary branch of engineering that designs and analyzes structures, such as buildings and bridges, with earthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes. An earthquake engineer aims to construct structures that will not be damaged in minor shaking and will avoid serious damage or collapse in a major earthquake. A properly engineered structure does not necessarily have to be extremely strong or expensive. It has to be properly designed to withstand the seismic effects while sustaining an acceptable level of damage.

<span class="mw-page-title-main">Wolf Creek Dam</span> Dam in Russell County, Kentucky

The Wolf Creek Dam is a multi-purpose dam on the Cumberland River in the western part of Russell County, Kentucky, United States. The dam serves at once four distinct purposes: it generates hydroelectricity; it regulates and limits flooding; it releases stored water to permit year-round navigation on the lower Cumberland River; and it creates Lake Cumberland for recreation, the largest man made lake by volume East of the Mississippi river. The Lake has become a popular tourist attraction.U.S. Route 127 is built on top of the dam.

<span class="mw-page-title-main">Predictive maintenance</span> Method to predict when equipment should be maintained

Predictive maintenance techniques are designed to help determine the condition of in-service equipment in order to estimate when maintenance should be performed. This approach claims more cost savings over routine or time-based preventive maintenance, because tasks are performed only when warranted. Thus, it is regarded as condition-based maintenance carried out as suggested by estimations of the degradation state of an item.

<span class="mw-page-title-main">Reservoir</span> Storage space for water

A reservoir is an enlarged lake behind a dam, usually built to store fresh water, often doubling for hydroelectric power generation.

<span class="mw-page-title-main">Isabella Dam</span> Dam in Kern County, California

Isabella Dam is an embankment dam located in the Kern River Valley, about halfway down the Kern River course, between the towns of Kernville and Lake Isabella in Kern County, California.

<span class="mw-page-title-main">Mullaperiyar Dam</span> Dam in Kerala, southern India

Mullaperiyar Dam is a masonry gravity dam on the Periyar River of Idukki district of Indian state of Kerala. It is situated 150km south east of Kochi and 200km north east of state capital city of Trivandrum. It is located 881 m (2,890 ft) above the sea level, on the Cardamom Hills of the Western Ghats in Thekkady, Idukki District of Kerala, India. It was constructed between 1887 and 1895 by John Pennycuick and also reached in an agreement to divert water eastwards to the Madras Presidency area. It has a height of 53.6 m (176 ft) from the foundation, and a length of 365.7 m (1,200 ft). The Periyar National Park in Thekkady is located around the dam's reservoir. The dam is built at the confluence of Mullayar and Periyar rivers. The dam is located in Kerala on the river Periyar, but is operated and maintained by the neighbouring state of Tamil Nadu. Although the Periyar River has a total catchment area of 5398 km2 with 114 km2 downstream from the dam in Tamil Nadu, the catchment area of the Mullaperiyar Dam itself lies entirely in Kerala and thus not an inter-State river. On 21 November 2014, the water level hit 142 feet for first time in 35 years. The reservoir again hit the maximum limit of 142 feet on 15 August 2018, following incessant rains in the state of Kerala. In a 2021 UNU-INWEH report about ageing large dams around the world, Mullaperiyar was said to be "situated in a seismically active area with significant structural flaws and poses risk to 3.5 million people if the 100+ years old dam were to fail".

<span class="mw-page-title-main">Earthquake early warning system</span> Alert system for in-progress earthquakes

An earthquake warning system or earthquake alarm system is a system of accelerometers, seismometers, communication, computers, and alarms that is devised for rapidly notifying adjoining regions of a substantial earthquake once one begins. This is not the same as earthquake prediction, which is currently not capable of producing decisive event warnings.

An annunciator panel, also known in some aircraft as the Centralized Warning Panel (CWP) or Caution Advisory Panel (CAP), is a group of lights used as a central indicator of status of equipment or systems in an aircraft, industrial process, building or other installation. Usually, the annunciator panel includes a main warning lamp or audible signal to draw the attention of operating personnel to the annunciator panel for abnormal events or condition.

<span class="mw-page-title-main">Collision avoidance system</span> Motorcar safety system

A collision avoidance system (CAS), also known as a pre-crash system, forward collision warning system (FCW), or collision mitigation system, is an advanced driver-assistance system designed to prevent or reduce the severity of a collision. In its basic form, a forward collision warning system monitors a vehicle's speed, the speed of the vehicle in front of it, and the distance between the vehicles, so that it can provide a warning to the driver if the vehicles get too close, potentially helping to avoid a crash. Various technologies and sensors that are used include radar (all-weather) and sometimes laser (LIDAR) and cameras to detect an imminent crash. GPS sensors can detect fixed dangers such as approaching stop signs through a location database. Pedestrian detection can also be a feature of these types of systems.

<span class="mw-page-title-main">Flood management</span> Methods for reducing detrimental effects of flood waters

Flood management describes methods used to reduce or prevent the detrimental effects of flood waters. Flooding can be caused by a mix of both natural processes, such as extreme weather upstream, and human changes to waterbodies and runoff. Flood management methods can be either of the structural type and of the non-structural type. Structural methods hold back floodwaters physically, while non-structural methods do not. Building hard infrastructure to prevent flooding, such as flood walls, is effective at managing flooding. However, it is best practice within landscape engineering to rely more on soft infrastructure and natural systems, such as marshes and flood plains, for handling the increase in water.

<span class="mw-page-title-main">Instrumentation in petrochemical industries</span>

Instrumentation is used to monitor and control the process plant in the oil, gas and petrochemical industries. Instrumentation ensures that the plant operates within defined parameters to produce materials of consistent quality and within the required specifications. It also ensures that the plant is operated safely and acts to correct out of tolerance operation and to automatically shut down the plant to prevent hazardous conditions from occurring. Instrumentation comprises sensor elements, signal transmitters, controllers, indicators and alarms, actuated valves, logic circuits and operator interfaces.

Reservoirs storing large volumes of water have the capability of causing considerable damage and loss of life if they fail. Reservoirs are considered "installations containing dangerous forces" under international humanitarian law because of their potential adverse impact. In 1975 the failure of the Banqiao Reservoir Dam and other dams in Henan Province, China caused more casualties than any other dam failures in history. The disaster killed an estimated 171,000 people and 11 million people lost their homes.

References

  1. TALWANI, PRADEEP (1997). "On the Nature of Reservoir-induced Seismicity" (PDF). Pure Appl. Geophys. 150 (3–4): 473–492. Bibcode:1997PApGe.150..473T. doi:10.1007/s000240050089. S2CID   32397341.
  2. Archived February 19, 2012, at the Wayback Machine
  3. Enel Green Power 'Enel Green Power locations'
  4. AuCo Solutions 'Dams monitoring'
  5. Meyers, Barry K. "DESIGNING DAM SAFETY MONITORING AND EARLY WARNING". ASDSO. Archived from the original on 2016-01-14.

Further reading