Damping torque

Last updated

Damping torque is provided by indicating instrument. Damper is a generic term used to identify any mechanism used for vibration energy absorption, the shaft vibration suppression, soft start and overload protection device. In order to design an efficient damper, it is imperative that the damping torque is calculated first. Damping torque or damping forces is the speed deviation of an electromechanical torque deviations of a machine while the angle deviation is called synchronizing torque [1]. In a measuring instrument, the damping torque is necessary to bring the moving system to rest to indicate steady reflection in a reasonable short time. It exists only as long as the pointer is in motion. Under the absence of damping torque the pointer oscillates for a short period of time and comes to steady position and this situation is called under damping. If the damping force is too large, then the pointer will come to rest slowly and this is called as over damping. [1] Damping torque is a physical process of controlling a system's movement through producing motion that opposes the natural oscillation of a system. Similar to friction, it only acts when a system is in motion, and is not present if the system is at rest. [2] Its primary purpose is to enable fast and accurate readings for an oscillating system. Instead of allowing an object to oscillate at its fundamental frequency forever, damping torque applies a counteractive force that slows the oscillation enough for a reading to be made. Although damping torque is used in many measurement devices, it is not something that has a set value, but instead is adjusted based on a pointer that is graphed on a deflection torque vs. time graph. Damping torque is an integral part in the measurement of moving systems because of its ability to control oscillation.

Contents

Production

There are four different ways of producing damping torque, these include air friction damping, fluid friction damping, eddy current damping, and electromagnetic damping.

Uses

Damping torque is used to enable fast and accurate reading of an object that undergoes oscillation. Due to inertia, an object in motion tends to stay in motion, thus requiring a counteractive force to bring it to its final rate of oscillation in a short period of time. Damping torque does this by opposing the natural oscillation, enabling the user to get an accurate reading. [5] It is used in most experiments that involve gathering data of a system that is in motion, as one of the only ways to obtain accurate data. It also has many different methods of production as outlined above, allowing it to be used in many models where a counteractive force is required. Although, as noted above there are certain methods of creating damping torque that are only applicable to a system if it meets the correct requirements.

Measurement

Damping torque is a motion that isn't assigned numbers while being used, but rather is tested and observed using a pointer in an experiment. A pointer of a device is the part that shows the damping torque based on a deflection torque vs time graph. This is done by taking into account both deflection and controlling torque in order to give the correct amount of damping torque. Deflection torque is what causes the pointer on the machine to oscillate, and the controlling torque is a counteractive force that stops the pointer from oscillating uncontrollably. Deflection torque and controlling torque work in a similar way to a scale, in that deflection torque is the weight that is pressed on the scale and the controlling torque is the counterweight that is used to balance out the initial weight. In order to get good results it is very important that these two forces equal one another. [4]

Deflection and Controlling Torque Production

Deflection and controlling torque, like damping torque, are not explicitly measured, but can be created and thus controlled in different 2ways. By creating these two torques the pointer will move in a specific way that can be analyzed as shown below. Deflection torque can be any type of force that initially puts the system in motion. Controlling torque on the other hand is generated by a measuring device, and thus is not a naturally occurring motion. There are two ways of producing a controlling torque, spring control and gravity control:

When analyzing the deflection and controlling torque there are three main categories, under damped, over damped, and critically damped. [4] If a system is under damped it will not reach its final rate of oscillation in a timely manner, and will oscillate slowly for a long period of time. If it is over damped, the system will oscillate at a rate that is too slow to give an accurate reading. Finally, if it is critically damped, it has an equal amount of deflection and controlling torque, thus allowing the pointer to quickly find the correct value, without the system oscillating past that value. [5] Critically damped means the machine has the right amount of damping torque and is ready to be used for experiments.

Related Research Articles

<span class="mw-page-title-main">Ammeter</span> Device that measures electric current

An ammeter is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit in which the current is to be measured. An ammeter usually has low resistance so that it does not cause a significant voltage drop in the circuit being measured.

<span class="mw-page-title-main">Oscillation</span> Repetitive variation of some measure about a central value

Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such as those between atoms.

<span class="mw-page-title-main">Galvanometer</span> Instrument to measure electric current

A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely.

A viscometer is an instrument used to measure the viscosity of a fluid. For liquids with viscosities which vary with flow conditions, an instrument called a rheometer is used. Thus, a rheometer can be considered as a special type of viscometer. Viscometers can measure only constant viscosity, that is, viscosity that does not change with flow conditions.

<span class="mw-page-title-main">Stepper motor</span> Electric motor for discrete partial rotations

A stepper motor, also known as step motor or stepping motor, is an electrical motor that rotates in a series of small angular steps, instead of continuously. Stepper motors are a type of digital actuators. Stepper motors are an eletromagnetic actuator; it converts electromagnetic energy into mechanical energy to perform mechanical work.

<span class="mw-page-title-main">Eddy current</span> Loops of electric current induced within conductors by a changing magnetic field

In electromagnetism, an eddy current is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes perpendicular to the magnetic field. They can be induced within nearby stationary conductors by a time-varying magnetic field created by an AC electromagnet or transformer, for example, or by relative motion between a magnet and a nearby conductor. The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of the material. When graphed, these circular currents within a piece of metal look vaguely like eddies or whirlpools in a liquid.

In physics, complex harmonic motion is a complicated realm based on the simple harmonic motion. The word "complex" refers to different situations. Unlike simple harmonic motion, which is regardless of air resistance, friction, etc., complex harmonic motion often has additional forces to dissipate the initial energy and lessen the speed and amplitude of an oscillation until the energy of the system is totally drained and the system comes to rest at its equilibrium point.

<span class="mw-page-title-main">Dynamometer</span> Machine used to measure force or mechanical power

A dynamometer or "dyno" for short, is a device for simultaneously measuring the torque and rotational speed (RPM) of an engine, motor or other rotating prime mover so that its instantaneous power may be calculated, and usually displayed by the dynamometer itself as kW or bhp.

In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include viscous damping in a fluid, surface friction, radiation, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes. Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.

<span class="mw-page-title-main">Eddy current brake</span> Device used to slow or stop a moving object by generating eddy currents

An eddy current brake, also known as an induction brake, Faraday brake, electric brake or electric retarder, is a device used to slow or stop a moving object by generating eddy currents and thus dissipating its kinetic energy as heat. Unlike friction brakes, where the drag force that stops the moving object is provided by friction between two surfaces pressed together, the drag force in an eddy current brake is an electromagnetic force between a magnet and a nearby conductive object in relative motion, due to eddy currents induced in the conductor through electromagnetic induction.

A dashpot, also known as a damper, is a mechanical device that resists motion via viscous friction. The resulting force is proportional to the velocity, but acts in the opposite direction, slowing the motion and absorbing energy. It is commonly used in conjunction with a spring. The process and instrumentation diagram (P&ID) symbol for a dashpot is .

The dynamic stability of an aircraft refers to how the aircraft behaves after it has been disturbed following steady non-oscillating flight.

<span class="mw-page-title-main">Transient response</span> Response of a system to a change from an equilibrium state

In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt events but to any event that affects the equilibrium of the system. The impulse response and step response are transient responses to a specific input.

<span class="mw-page-title-main">Electromagnetic clutch</span> Clutch that operates electrically but transmits torque mechanically

Electromagnetic clutches operate electrically but transmit torque mechanically. This is why they used to be referred to as electro-mechanical clutches. Over the years, EM became known as electromagnetic versus electro-mechanical, referring more about their actuation method versus physical operation. Since the clutches started becoming popular over 60 years ago, the variety of applications and clutch designs has increased dramatically, but the basic operation remains the same today.

Electromagnetic brakes or EM brakes are used to slow or stop vehicles using electromagnetic force to apply mechanical resistance (friction). They were originally called electro-mechanical brakes but over the years the name changed to "electromagnetic brakes", referring to their actuation method which is generally unrelated to modern electro-mechanical brakes. Since becoming popular in the mid-20th century, especially in trains and trams, the variety of applications and brake designs has increased dramatically, but the basic operation remains the same.

<span class="mw-page-title-main">Electrostatic voltmeter</span>

Electrostatic voltmeter can refer to an electrostatic charge meter, known also as surface DC voltmeter, or to a voltmeter to measure large electrical potentials, traditionally called electrostatic voltmeter.

<span class="mw-page-title-main">Megohmmeter</span>

A Megohmmeter or insulation resistance tester, also colloquially known as megger, is a special type of ohmmeter used to measure the electrical resistance of insulators. Insulating components, for example cable jackets, must be tested for their insulation strength at the time of commissioning and as part of maintenance of high voltage electrical equipment and installations.

Spacecraft attitude control is the process of controlling the orientation of a spacecraft with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.

<span class="mw-page-title-main">Arago's rotations</span> Magnetic phenomenon

Arago's rotations is an observable magnetic phenomenon that involves the interactions between a magnetized needle and a moving metal disk. The effect was discovered by François Arago in 1824. At the time of their discovery, Arago's rotations were surprising effects that were difficult to explain. In 1831, Michael Faraday introduced the theory of electromagnetic induction, which explained how the effects happen in detail.

<span class="mw-page-title-main">Magnetic levitation</span> Suspension of objects by magnetic force.

Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces.

References

  1. Ghosh, Smarajit (2005). Fundamentals of Electric and Electronics Engineering. India: Prentice Hall of India Private Limited. p. 293. ISBN   81-203-2316-5.
  2. "Deflecting | Controlling | Damping Torque". your electrical guide. 2017-01-19. Retrieved 2020-11-17.
  3. 1 2 3 4 "electrical topics: Methods of Production of Damping Torque". electrical topics. 2014-12-12. Retrieved 2020-11-17.
  4. 1 2 3 4 "Damping Torques & types in Indicating Measuring Instruments". Electrical Engineering Info. 28 November 2016. Retrieved 2020-11-17.
  5. 1 2 "Electrical Engineering - What is Damping Torque?". engineeringslab.com. Retrieved 2020-11-17.
  6. "Essentials of Indicating Instruments | Deflecting Torque | Controlling Torque | Damping Torque | Freely Electrons". Essentials of Indicating Instruments | Deflecting Torque | Controlling Torque | Damping Torque | Freely Electrons. Retrieved 2020-11-17.