Darken's equations

Last updated

In metallurgy, the Darken equations are used to describe the solid-state diffusion of materials in binary solutions. They were first described by Lawrence Stamper Darken in 1948. [1] The equations apply to cases where a solid solution's two components do not have the same coefficient of diffusion.

Contents

The equations

Darken's first equation is:

where:

It is important to note that this equation only holds in situations where the total concentration remains constant.

Darken's second equation is:

where:

Experimental methods

In deriving the first equation, Darken referenced Simgelskas and Kirkendall's experiment, which tested the mechanisms and rates of diffusion and gave rise to the concept now known as the Kirkendall effect. [2] For the experiment, inert molybdenum wires were placed at the interface between copper and brass components, and the motion of the markers was monitored. The experiment supported the concept that a concentration gradient in a binary alloy would result in the different components having different velocities in the solid solution. The experiment showed that in brass zinc had a faster relative velocity than copper, since the molybdenum wires moved farther into the brass. In establishing the coordinate axes to evaluate the derivation, Darken refers back to Smigelskas and Kirkendall’s experiment which the inert wires were designated as the origin. [1]

In respect to the derivation of the second equation, Darken referenced W. A. Johnson’s experiment on a gold–silver system, which was performed to determine the chemical diffusivity. In this experiment radioactive gold and silver isotopes were used to measure the diffusivity of gold and silver, because it was assumed that the radioactive isotopes have relatively the same mobility as the non-radioactive elements. If the gold–silver solution is assumed to behave ideally, it would be expected the diffusivities would also be equivalent. Therefore, the overall diffusion coefficient of the system would be the average of each components diffusivity; however, this was found not to be true. [1] This finding led Darken to analyze Johnson's experiment and derive the equation for chemical diffusivity of binary solutions.

Darken's first equation

Background

As stated previously, Darken's first equation allows the calculation of the marker velocity in respect to a binary system where the two components have different diffusion coefficients. For this equation to be applicable, the analyzed system must have a constant concentration and can be modeled by the Boltzmann–Matano solution.

For the derivation, a hypothetical case is considered where two homogeneous binary alloy rods of two different compositions are in contact. The sides are protected, so that all of the diffusion occurs parallel to the length of the rod. In establishing the coordinate axes to evaluate the derivation, Darken sets the x-axis to be fixed at the far ends of the rods, and the origin at the initial position of the interface between the two rods. In addition this choice of a coordinate system allows the derivation to be simplified, whereas Smigelskas and Kirkendall's coordinate system was considered to be the non-optimal choice for this particular calculation as can be seen in the following section. At the initial planar interface between the rods, it is considered that there are infinitely small inert markers placed in a plane which is perpendicular to the length of the rods. Here, inert markers are defined to be a group of particles that are of a different elemental make-up from either of the diffusing components and move in the same fashion. For this derivation, the inert markers are assumed to be following the motion of the crystal lattice. The motion relative to the marker is associated with diffusion, , while the motion of the markers is associated with advection, . Fick’s first law, the previous equation stated for diffusion, describes the entirety of the system for only small distances from the origin, since at large distances advection needs to be accounted for. This results in the total rate of transport for the system being influenced by both factors, diffusion and advection. [1]

Derivation

The derivation starts with Fick's first law using a uniform distance axis y as the coordinate system and having the origin fixed to the location of the markers. It is assumed that the markers move relative to the diffusion of one component and into one of the two initial rods, as was chosen in Kirkendall's experiment. In the following equation, which represents Fick's first law for one of the two components, D1 is the diffusion coefficient of component one, and C1 is the concentration of component one:

This coordinate system only works for short range from the origin because of the assumption that marker movement is indicative of diffusion alone, which is not true for long distances from the origin as stated before. The coordinate system is transformed using a Galilean transformation, y = x − νt, where x is the new coordinate system that is fixed to the ends of the two rods, ν is the marker velocity measured with respect to the x axis. The variable t, time, is assumed to be constant, so that the partial derivative of C1 with respect to y is equal to the partial of C1 with respect to x. This transformation then yields

The above equation, in terms of the variable x, only takes into account diffusion, so the term for the motion of the markers must also be included, since the frame of reference is no longer moving with the marker particles. In the equation below, is the velocity of the markers.

Taking the above equation and then equating it to the accumulation rate in a volume results in the following equation. This result is similar to Fick's second law, but with an additional advection term:

The same equation can be written for the other component, designated as component two:

Using the assumption that C, the total concentration, is constant, [3] C1 and C2 can be related in the following expression:

The above equation can then be used to combine the expressions for and to yield

Since C is constant, the above equation can be written as

The above equation states that is constant because the derivative of a constant is equal to zero. Therefore, by integrating the above equation it is transforms to , where is an integration constant.

At relative infinite distances from the initial interface, the concentration gradients of each of the components and the marker velocity can be assumed to be equal to zero. Based on this condition and the choice for the coordinate axis, where the x axis fixed at the far ends of the rods, I is equal zero. [4] These conditions then allow the equation to be rearranged to give

Since C is assumed to be constant, . Rewriting this equation in terms of atom fraction and yields [1]

Accompanying derivation

Referring back to the derivation for Darken's first equation, is written as

Inserting this value for in gives

As stated before, , which gives

Rewriting this equation in terms of atom fraction and yields

By using and solving to the form , it is found that

Integrating the above gives the final equation:

This equation is only applicable for binary systems that follow the equations of state and the Gibbs–Duhem equation. This equation, as well as Darken's first law, , gives a complete description of an ideal binary diffusion system. [1] This derivation was the approach taken by Darken in his original 1948, though shorter methods can be used to attain the same result.

Darken's second equation

Background

Darken's second equation relates the chemical diffusion coefficient, , of a binary system to the atomic fractions of the two components. Similar to the first equation, this equation is applicable when the system does not undergo a volume change. This equation also only applies to multicomponent systems, including binary systems, that obey the equations of state and the Gibbs–Duhem equations.

Derivation

To derive Darken's second equation the gradient in Gibb's chemical potential is analyzed. The gradient in potential energy, denoted by F2, is the force which causes atoms to diffuse. [1] To begin, the flux J is equated to the product of the differential of the gradient and the mobility B, which is defined as the diffusing atom's velocity per unit of applied force. [5] In addition, NA is the Avogadro constant, and C2 is the concentration of diffusing component two. This yields

which can be equated to the expression for Fick's first law:

so that the expression can be written as

After some rearrangement of variables the expression can be written for D2, the diffusivity of component two:

Assuming that atomic volume is constant, so C = C1 + C2,

Using a definition activity, , where R is the gas constant, and T is the temperature, to rewrite the equation in terms of activity gives

The above equation can be rewritten in terms of the activity coefficient γ, which is defined in terms of activity by the equation . This yields

The same equation can also be written for the diffusivity of component one, , and combining the equations for D1 and D2 gives the final equation: [1]

Applications

Darken’s equations can be applied to almost any scenario involving the diffusion of two different components that have different diffusion coefficients. This holds true except in situations where there is an accompanying volume change in the material because this violates one of Darken’s critical assumptions that atomic volume is constant. More complicated equations than presented must be used in cases where there is convection. One application in which Darken’s equations play an instrumental role is in analyzing the process of diffusion bonding. [6] Diffusion bonding is used widely in manufacturing to connect two materials without using adhesives or welding techniques. Diffusion bonding works because atoms from both materials diffuse into the other material, resulting in a bond that is formed between the two materials. The diffusion of atoms between the two materials is achieved by placing the materials in contact with each other at high pressure and temperature, while not exceeding the melting temperature of either material. Darken’s equations, particularly Darken’s second equation, come into play when determining the diffusion coefficients for the two materials in the diffusion couple. Knowing the diffusion coefficients is necessary for predicting the flux of atoms between the two materials, which can then be used in numerical models of the diffusion bonding process, as, for example, was looked at in the paper by Orhan, Aksoy, and Eroglu when creating a model to determine the amount of time required to create a diffusion bond. [6] In a similar manner, Darken’s equations were used in a paper by Watanabe et al., on the nickel-aluminum system, to verify the interdiffusion coefficients that were calculated for nickel aluminum alloys. [7]

Application of Darken’s first equation has important implications for analyzing the structural integrity of materials. Darken’s first equation, , can be rewritten in terms of vacancy flux, . [8] Use of Darken’s equation in this form has important implications for determining the flux of vacancies into a material undergoing diffusion bonding, which, due to the Kirkendall effect, could lead to porosity in the material and have an adverse effect on its strength. This is particularly important in materials such as aluminum nickel superalloys that are used in jet engines, where the structural integrity of the materials is extremely important. Porosity formation, known as Kirkendall porosity, in these nickel-aluminum superalloys have been observed when diffusion bonding has been used. [9] [10] It is important then to use Darken’s findings to predict this porosity formation.

See also

Related Research Articles

<span class="mw-page-title-main">Fick's laws of diffusion</span> Mathematical descriptions of molecular diffusion

Fick's laws of diffusion describe diffusion and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation.

The Kirkendall effect is the motion of the interface between two metals that occurs due to the difference in diffusion rates of the metal atoms. The effect can be observed for example by placing insoluble markers at the interface between a pure metal and an alloy containing that metal, and heating to a temperature where atomic diffusion is reasonable for the given timescale; the boundary will move relative to the markers.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

<span class="mw-page-title-main">Reaction rate</span> Speed at which a chemical reaction takes place

The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second. For most reactions, the rate decreases as the reaction proceeds. A reaction's rate can be determined by measuring the changes in concentration over time.

In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction is an operation that consists of expressing the fraction as a sum of a polynomial and one or several fractions with a simpler denominator.

<span class="mw-page-title-main">Burgers' equation</span> Partial differential equation

Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation occurring in various areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. The equation was first introduced by Harry Bateman in 1915 and later studied by Johannes Martinus Burgers in 1948. For a given field and diffusion coefficient , the general form of Burgers' equation in one space dimension is the dissipative system:

In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

<span class="mw-page-title-main">Opacity</span> Property of an object or substance that is impervious to light

Opacity is the measure of impenetrability to electromagnetic or other kinds of radiation, especially visible light. In radiative transfer, it describes the absorption and scattering of radiation in a medium, such as a plasma, dielectric, shielding material, glass, etc. An opaque object is neither transparent nor translucent. When light strikes an interface between two substances, in general, some may be reflected, some absorbed, some scattered, and the rest transmitted. Reflection can be diffuse, for example light reflecting off a white wall, or specular, for example light reflecting off a mirror. An opaque substance transmits no light, and therefore reflects, scatters, or absorbs all of it. Other categories of visual appearance, related to the perception of regular or diffuse reflection and transmission of light, have been organized under the concept of cesia in an order system with three variables, including opacity, transparency and translucency among the involved aspects. Both mirrors and carbon black are opaque. Opacity depends on the frequency of the light being considered. For instance, some kinds of glass, while transparent in the visual range, are largely opaque to ultraviolet light. More extreme frequency-dependence is visible in the absorption lines of cold gases. Opacity can be quantified in many ways; for example, see the article mathematical descriptions of opacity.

<span class="mw-page-title-main">UNIFAC</span> Liquid equilibrium model in statistical thermodynamics

In statistical thermodynamics, the UNIFAC method is a semi-empirical system for the prediction of non-electrolyte activity in non-ideal mixtures. UNIFAC uses the functional groups present on the molecules that make up the liquid mixture to calculate activity coefficients. By using interactions for each of the functional groups present on the molecules, as well as some binary interaction coefficients, the activity of each of the solutions can be calculated. This information can be used to obtain information on liquid equilibria, which is useful in many thermodynamic calculations, such as chemical reactor design, and distillation calculations.

<span class="mw-page-title-main">Spinodal decomposition</span> Mechanism of spontaneous phase separation

Spinodal decomposition is a mechanism by which a single thermodynamic phase spontaneously separates into two phases. Decomposition occurs when there is no thermodynamic barrier to phase separation. As a result, phase separation via decomposition does not require the nucleation events resulting from thermodynamic fluctuations, which normally trigger phase separation.

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

The grain boundary diffusion coefficient is the diffusion coefficient of a diffusant along a grain boundary in a polycrystalline solid. It is a physical constant denoted , and it is important in understanding how grain boundaries affect atomic diffusivity. Grain boundary diffusion is a commonly observed route for solute migration in polycrystalline materials. It dominates the effective diffusion rate at lower temperatures in metals and metal alloys. Take the apparent self-diffusion coefficient for single-crystal and polycrystal silver, for example. At high temperatures, the coefficient is the same in both types of samples. However, at temperatures below 700 °C, the values of with polycrystal silver consistently lie above the values of with a single crystal.

<span class="mw-page-title-main">Lattice diffusion coefficient</span> Atomic diffusion within a crystalline lattice

In condensed matter physics, lattice diffusion refers to atomic diffusion within a crystalline lattice, which occurs by either interstitial or substitutional mechanisms. In interstitial lattice diffusion, a diffusant, will diffuse in between the lattice structure of another crystalline element. In substitutional lattice diffusion, the atom can only move by switching places with another atom. Substitutional lattice diffusion is often contingent upon the availability of point vacancies throughout the crystal lattice. Diffusing particles migrate from point vacancy to point vacancy by the rapid, essentially random jumping about. Since the prevalence of point vacancies increases in accordance with the Arrhenius equation, the rate of crystal solid state diffusion increases with temperature. For a single atom in a defect-free crystal, the movement can be described by the "random walk" model.

In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.

In electrochemistry, the Randles–Ševčík equation describes the effect of scan rate on the peak current for a cyclic voltammetry experiment. For simple redox events where the reaction is electrochemically reversible, and the products and reactants are both soluble, such as the ferrocene/ferrocenium couple, ip depends not only on the concentration and diffusional properties of the electroactive species but also on scan rate.

MOSCED is a thermodynamic model for the estimation of limiting activity coefficients. From a historical point of view MOSCED can be regarded as an improved modification of the Hansen method and the Hildebrand solubility model by adding higher interaction term such as polarity, induction and separation of hydrogen bonding terms. This allows the prediction of polar and associative compounds, which most solubility parameter models have been found to do poorly. In addition to making quantitative prediction, MOSCED can be used to understand fundamental molecular level interaction for intuitive solvent selection and formulation.

A vortex sheet is a term used in fluid mechanics for a surface across which there is a discontinuity in fluid velocity, such as in slippage of one layer of fluid over another. While the tangential components of the flow velocity are discontinuous across the vortex sheet, the normal component of the flow velocity is continuous. The discontinuity in the tangential velocity means the flow has infinite vorticity on a vortex sheet.

In materials science, Nabarro–Herring creep is a mechanism of deformation of crystalline materials that occurs at low stresses and held at elevated temperatures in fine-grained materials. In Nabarro–Herring creep, atoms diffuse through the crystals, and the rate of creep varies inversely with the square of the grain size so fine-grained materials creep faster than coarser-grained ones. NH creep is solely controlled by diffusional mass transport.

References

  1. 1 2 3 4 5 6 7 8 Darken, L. S. "Diffusion, mobility and their interrelation through free energy in binary metallic systems". Trans. AIME 175.1 (1948): 184–194.
  2. Smigelskas, A. D., and E. O. Kirkendall. "Zinc diffusion in alpha brass". Trans. AIME 171 (1947): 130–142.
  3. Sekerka, R. F. "Similarity Solutions for a Binary Diffusion Couple with Diffusivity and Density Dependent on Composition". Progress in Materials Science 49 (2004): 511–536.
  4. Glicksman, Martin E. (2000). Diffusion in solids: field theory, solid-state principles, and applications. New York: Wiley. ISBN   978-0-471-23972-7.
  5. Gaskell, David R. An Introduction to: Transport Phenomena in Materials Engineering. 2nd ed. New York; Momentum Press, 2012.
  6. 1 2 Orhan, N.; Aksoy, M.; Eroglu, M. (1999). "A new model for diffusion bonding and its application to duplex alloys". Materials Science and Engineering: A. 271 (1–2): 458–468. doi:10.1016/S0921-5093(99)00315-9.
  7. Watanabe, M.; Horita, Z.; Sano, T.; Nemoto, M. (1994). "Electron microscopy study of Ni/Ni3Al diffusion-couple interface—II. Diffusivity measurement". Acta Metallurgica et Materialia. 42 (10): 3389–3396. doi:10.1016/0956-7151(94)90471-5.
  8. "DoITPoMS - TLP Library Diffusion - Derivation of darken equation".
  9. Karunaratne, M. S. A.; Carter, P.; Reed, R. C. (2001). "On the diffusion of aluminium and titanium in the Ni-rich Ni-Al-Ti system between 900 and 1200°C". Acta Materialia. 49 (5): 861-875. Bibcode:2001AcMat..49..861K. doi:10.1016/S1359-6454(00)00390-6.
  10. Janssen, M. M. P. (1973). "Diffusion in the nickel-rich part of the Ni−Al system at 1000° to 1300°C; Ni3Al layer growth, diffusion coefficients, and interface concentrations". Metallurgical Transactions. 4 (6): 1623–1633. doi:10.1007/BF02668017.