Diffusion bonding or diffusion welding is a solid-state welding technique used in metalworking, capable of joining similar and dissimilar metals. It operates on the principle of solid-state diffusion, wherein the atoms of two solid, metallic surfaces intersperse themselves over time. This is typically accomplished at an elevated temperature, approximately 50-75% of the absolute melting temperature of the materials. [1] [2] A weak bond can also be achieved at room temperature. [3] Diffusion bonding is usually implemented by applying high pressure, in conjunction with necessarily high temperature, to the materials to be welded; the technique is most commonly used to weld "sandwiches" of alternating layers of thin metal foil, and metal wires or filaments. [4] Currently, the diffusion bonding method is widely used in the joining of high-strength and refractory metals within the aerospace [1] and nuclear industries.[ citation needed ]
The act of diffusion welding is centuries old. This can be found in the form of "gold-filled," a technique used to bond gold and copper for use in jewelry and other applications. In order to create filled gold, smiths would begin by hammering out an amount of solid gold into a thin sheet of gold foil. This film was then placed on top of a copper substrate and weighted down. Finally, using a process known as "hot-pressure welding" or HPW, the weight/copper/gold-film assembly was placed inside an oven and heated until the gold film was sufficiently bonded to the copper substrate. [5]
Modern methods were described by the Soviet scientist N.F. Kazakov in 1953. [6]
Diffusion bonding involves no liquid fusion, and often no filler metal. No weight is added to the total, and the join tends to exhibit both the strength and temperature resistance of the base metal(s). The materials endure no, or very little, plastic deformation. Very little residual stress is introduced, and there is no contamination from the bonding process. It may theoretically be performed on a join surface of any size with no increase in processing time, however, practically speaking, the surface tends to be limited by the pressure required and physical limitations. Diffusion bonding may be performed with similar and dissimilar metals, reactive and refractory metals, or pieces of varying thicknesses.
Due to its relatively high cost, diffusion bonding is most often used for jobs either difficult or impossible to weld by other means. Examples include welding materials normally impossible to join via liquid fusion, such as zirconium and beryllium; materials with very high melting points such as tungsten; alternating layers of different metals which must retain strength at high temperatures; and very thin, honeycombed metal foil structures. [7] [8] [9] Titanium alloys will often be diffusion bonded as the thin oxide layer can be dissolved and diffused away from the bonding surfaces at temperatures over 850 °C.
Steady state diffusion is determined by the amount of diffusion flux that passes through the cross-sectional area of the mating surfaces. Fick's first law of diffusion states:
where J is the diffusion flux, D is a diffusion coefficient, and dC/dx is the concentration gradient through the materials in question. The negative sign is a product of the gradient. Another form of Fick's law states:
where M is defined as either the mass or amount of atoms being diffused, A is the cross-sectional area, and t is the time required. Equating the two equations and rearranging, we achieve the following result:
As mass and area are constant for a given joint, time required is largely dependent on the concentration gradient, which changes by only incremental amounts through the joint, and the diffusion coefficient. The diffusion coefficient is determined by the equation:
where Qd is the activation energy for diffusion, R is the universal gas constant, T is the thermodynamic temperature experienced during the process, and D0 is a temperature-independent preexponential factor that depends on the materials being joined. For a given joint, the only term in this equation within control is temperature. [10]
When joining two materials of similar crystalline structure, diffusion bonding is performed by clamping the two pieces to be welded with their surfaces abutting each other. Prior to welding, these surfaces must be machined to as smooth a finish as economically viable, and kept as free from chemical contaminants or other detritus as possible. Any intervening material between the two metallic surfaces may prevent adequate diffusion of material. Specific tooling is made for each welding application to mate the welder to the workpieces. [11] Once clamped, pressure and heat are applied to the components, usually for many hours. The surfaces are heated either in a furnace, or via electrical resistance. Pressure can be applied using a hydraulic press at temperature; this method allows for exact measurements of load on the parts. In cases where the parts must have no temperature gradient, differential thermal expansion can be used to apply load. By fixturing parts using a low-expansion metal (i.e. molybdenum) the parts will supply their own load by expanding more than the fixture metal at temperature. Alternative methods for applying pressure include the use of dead weights, differential gas pressure between the two surfaces, and high-pressure autoclaves. Diffusion bonding must be done in a vacuum or inert gas environment when using metals that have strong oxide layers (i.e. copper). Surface treatment including polishing, etching, and cleaning as well as diffusion pressure and temperature are important factors regarding the process of diffusion bounding. [7] [8] [9]
At the microscopic level, diffusion bonding occurs in three simplified stages: [12]
Diffusion bonding is primarily used to create intricate forms for the electronics, aerospace, nuclear, and microfluidics industries. Since this form of bonding takes a considerable amount of time compared to other joining techniques such as explosion welding, parts are made in small quantities, and often fabrication is mostly automated. However, due to different requirements, the required time could be reduced. In an attempt to reduce fastener count, labor costs, and part count, diffusion bonding, in conjunction with superplastic forming, is also used when creating complex sheet metal forms. Multiple sheets are stacked atop one another and bonded in specific sections. The stack is then placed into a mold and gas pressure expands the sheets to fill the mold. This is often done using titanium or aluminum alloys for parts needed in the aerospace industry. [15]
Typical materials that are welded include titanium, beryllium, and zirconium. In many military aircraft diffusion bonding will help to allow for the conservation of expensive strategic materials and the reduction of manufacturing costs. Some aircraft have over 100 diffusion-bonded parts, including fuselages, outboard and inboard actuator fittings, landing gear trunnions, and nacelle frames.
Solder is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable for use as solder should have a lower melting point than the pieces to be joined. The solder should also be resistant to oxidative and corrosive effects that would degrade the joint over time. Solder used in making electrical connections also needs to have favorable electrical characteristics.
Welding is a fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melt the parts together and allow them to cool, causing fusion. Common alternative methods include solvent welding using chemicals to melt materials being bonded without heat, and solid-state welding processes which bond without melting, such as pressure, cold welding, and diffusion bonding.
Wire bonding is a method of making interconnections between an integrated circuit (IC) or other semiconductor device and its packaging during semiconductor device fabrication. Wire bonding can also be used to connect an IC to other electronics or to connect from one printed circuit board (PCB) to another, although these are less common. Wire bonding is generally considered the most cost-effective and flexible interconnect technology and is used to assemble the vast majority of semiconductor packages. Wire bonding can be used at frequencies above 100 GHz.
Brazing is a metal-joining process in which two or more metal items are joined by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.
In metallurgy, a flux is a chemical reducing agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.
Cold welding or contact welding is a solid-state welding process in which joining takes place without fusion or heating at the interface of the two parts to be welded. Unlike in fusion welding, no liquid or molten phase is present in the joint.
Forge welding (FOW), also called fire welding, is a solid-state welding process that joins two pieces of metal by heating them to a high temperature and then hammering them together. It may also consist of heating and forcing the metals together with presses or other means, creating enough pressure to cause plastic deformation at the weld surfaces. The process, although challenging, has been a method of joining metals used since ancient times and is a staple of traditional blacksmithing. Forge welding is versatile, being able to join a host of similar and dissimilar metals. With the invention of electrical welding and gas welding methods during the Industrial Revolution, manual forge-welding has been largely replaced, although automated forge-welding is a common manufacturing process.
Ultrasonic welding is an industrial process whereby high-frequency ultrasonic acoustic vibrations are locally applied to work pieces being held together under pressure to create a solid-state weld. It is commonly used for plastics and metals, and especially for joining dissimilar materials. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. When used to join metals, the temperature stays well below the melting point of the involved materials, preventing any unwanted properties which may arise from high temperature exposure of the metal.
Friction stir welding (FSW) is a solid-state joining process that uses a non-consumable tool to join two facing workpieces without melting the workpiece material. Heat is generated by friction between the rotating tool and the workpiece material, which leads to a softened region near the FSW tool. While the tool is traversed along the joint line, it mechanically intermixes the two pieces of metal, and forges the hot and softened metal by the mechanical pressure, which is applied by the tool, much like joining clay, or dough. It is primarily used on wrought or extruded aluminium and particularly for structures which need very high weld strength. FSW is capable of joining aluminium alloys, copper alloys, titanium alloys, mild steel, stainless steel and magnesium alloys. More recently, it was successfully used in welding of polymers. In addition, joining of dissimilar metals, such as aluminium to magnesium alloys, has been recently achieved by FSW. Application of FSW can be found in modern shipbuilding, trains, and aerospace applications.
Electric resistance welding (ERW) is a welding process in which metal parts in contact are permanently joined by heating them with an electric current, melting the metal at the joint. Electric resistance welding is widely used, for example, in manufacture of steel pipe and in assembly of bodies for automobiles. The electric current can be supplied to electrodes that also apply clamping pressure, or may be induced by an external magnetic field. The electric resistance welding process can be further classified by the geometry of the weld and the method of applying pressure to the joint: spot welding, seam welding, flash welding, projection welding, for example. Some factors influencing heat or welding temperatures are the proportions of the workpieces, the metal coating or the lack of coating, the electrode materials, electrode geometry, electrode pressing force, electric current and length of welding time. Small pools of molten metal are formed at the point of most electrical resistance as an electric current is passed through the metal. In general, resistance welding methods are efficient and cause little pollution, but their applications are limited to relatively thin materials.
Hardenability is the depth to which a steel is hardened after putting it through a heat treatment process. It should not be confused with hardness, which is a measure of a sample's resistance to indentation or scratching. It is an important property for welding, since it is inversely proportional to weldability, that is, the ease of welding a material.
Dr. Ramulu Mamidala is a mechanical engineering professor at University of Washington. Usually goes by the name 'Ram', or 'M.R.', he is recognized for his leadership and outstanding record in promoting collaborative education and research with industry. He is currently the director of Manufacturing Science and Technology Laboratory (MSTL) at Mechanical Engineering Department, University of Washington. He has designed and developed manufacturing methods for a wide range of systems, from the B2 bomber to the Boeing 787. Additionally, in collaboration with industry, he established and directed two interdisciplinary graduate educational programs in engineering and management and a certificate program in composites tooling and manufacturing. His exemplary collaborative efforts motivated working engineers to pursue doctoral studies and he is a leader in using emerging technologies in distance education to reach non-traditional students.
An aluminium alloy (UK/IUPAC) or aluminum alloy is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.
Ultrasonic Consolidation (UC) or Ultrasonic Additive Manufacturing (UAM) is a low temperature additive manufacturing or 3D printing technique for metals.
Thermocompression bonding describes a wafer bonding technique and is also referred to as diffusion bonding, pressure joining, thermocompression welding or solid-state welding. Two metals, e.g. gold-gold (Au), are brought into atomic contact applying force and heat simultaneously. The diffusion requires atomic contact between the surfaces due to the atomic motion. The atoms migrate from one crystal lattice to the other one based on crystal lattice vibration. This atomic interaction sticks the interface together. The diffusion process is described by the following three processes:
Cladding is the bonding together of dissimilar metals. It is different from fusion welding or gluing as a method to fasten the metals together. Cladding is often achieved by extruding two metals through a die as well as pressing or rolling sheets together under high pressure.
Glass frit bonding, also referred to as glass soldering or seal glass bonding, describes a wafer bonding technique with an intermediate glass layer. It is a widely used encapsulation technology for surface micro-machined structures, e.g., accelerometers or gyroscopes. This technique utilizes low melting-point glass and therefore provides various advantages including that viscosity of glass decreases with an increase of temperature. The viscous flow of glass has effects to compensate and planarize surface irregularities, convenient for bonding wafers with a high roughness due to plasma etching or deposition. A low viscosity promotes hermetically sealed encapsulation of structures based on a better adaption of the structured shapes. Further, the coefficient of thermal expansion (CTE) of the glass material is adapted to silicon. This results in low stress in the bonded wafer pair. The glass has to flow and wet the soldered surfaces well below the temperature where deformation or degradation of either of the joined materials or nearby structures occurs. The usual temperature of achieving flowing and wetting is between 450 and 550 °C.
Transient liquid phase diffusion bonding (TLPDB) is a joining process that has been applied for bonding many metallic and ceramic systems which cannot be bonded by conventional fusion welding techniques. The bonding process produces joints with a uniform composition profile, tolerant of surface oxides and geometrical defects. The bonding technique has been exploited in a wide range of applications, from the production and repair of turbine engines in the aerospace industry, to nuclear power plants, and in making connections to integrated circuit dies as a part of the microelectronics industry.
Adhesive bonding is a process by which two members of equal or dissimilar composition are joined. It is used in place of, or to complement other joining methods such mechanical fasting by the use nails, rivets, screws or bolts and many welding processes. The use of adhesives provides many advantages over welding and mechanical fastening in steel construction; however, many challenges still exist that have made the use of adhesives in structural steel components very limited.
Solvent bonding is not a method of adhesive bonding, but rather a method of fusing two thermoplastic plastics. Application of a solvent to a thermoplastic material softens the polymer, and with applied pressure this results in polymer chain interdiffusion at the bonding junction. When the solvent evaporates, this leaves a fully consolidated bond-line. An advantage to solvent bonding versus other polymer joining methods is that bonding generally occurs below the glass transition temperature of the polymer.
{{cite book}}
: CS1 maint: others (link){{cite book}}
: CS1 maint: others (link)