This is a list of welding processes, separated into their respective categories. The associated N reference numbers (second column) are specified in ISO 4063 (in the European Union published as EN ISO 4063). [1] Numbers in parentheses are obsolete and were removed from the current (1998) version of ISO 4063. The AWS reference codes of the American Welding Society are commonly used in North America. [2]
Overview article: arc welding
Name | N | AWS | Characteristics | Applications |
---|---|---|---|---|
Bare Metal Arc Welding | (113) | BMAW | Consumable electrode, no flux or shielding gas | Historical |
Carbon Arc Welding | (181) | CAW | Carbon electrode, historical | Copper, repair (limited) |
Flux Cored Arc Welding | 136 138 | FCAW FCAW-S | Continuous consumable electrode filled with flux | Industry, construction |
Gas Metal Arc Welding [3] | 131 135 | GMAW | Continuous consumable electrode and shielding gas | Industry |
Gas Tungsten Arc Welding [4] | 141 | GTAW | Nonconsumable electrode, slow, high quality welds | Aerospace, Construction (piping), Tool and Die |
Plasma Arc Welding | 15 | PAW | Nonconsumable electrode, constricted arc | Tubing, instrumentation |
Shielded Metal Arc Welding [5] | 111 | SMAW | Consumable electrode covered in flux, can weld any metal as long as they have the right electrode | Construction, outdoors, maintenance |
Submerged Arc Welding | 121 | SAW | Automatic, arc submerged in granular flux | |
Magnetically Impelled Arc Butt Welding | 185 | MIAB | Both tube ends are electrodes; no protection gas; arc rotates fast along edge by applied magnetic field | Pipelines and tubes |
Atomic Hydrogen Welding | (149) | AHW | Two metal electrodes in hydrogen atmosphere | Historical |
Overview article: Oxy-fuel welding and cutting
Name | N | AWS | Characteristics | Applications |
---|---|---|---|---|
Air acetylene welding | (321) | AAW | Chemical welding process, not popular | Limited |
Oxyacetylene welding | 311 | OAW | Combustion of acetylene with oxygen produces high-temperature flame, inexpensive equipment | Maintenance, repair |
Oxygen/Propane welding | 312 | Gas welding with oxygen/propane flame | ||
Oxyhydrogen welding | 313 | OHW | Combustion of hydrogen with oxygen produces flame | Limited |
Pressure gas welding | PGW | Gas flames heat surfaces and pressure produces the weld | Pipe, railroad rails (limited) |
Overview article: electric resistance welding
Name | N | AWS | Characteristics | Applications |
---|---|---|---|---|
Resistance spot welding | 21 | RSW | Two pointed electrodes apply pressure and current to two or more thin workpieces | Automobile industry, Aerospace industry |
Resistance seam welding [6] | 22 | RSEW | Two wheel-shaped electrodes roll along workpieces, applying pressure and current | Aerospace industry, steel drums, tubing |
Projection welding | 23 | PW | Semi-Automatic, Automatic, Welds are localized at predetermined points. | |
Flash welding | 24 | FW | ||
Upset welding | 25 | UW | Butt joint surfaces heated and brought together by force |
Name | N | AWS | Characteristics | Applications |
---|---|---|---|---|
Coextrusion Welding | CEW | Dissimilar metals are extruded through the same die | Joining of corrosion resistant alloys to cheaper alloys or alloys with more favorable mechanical properties | |
Cold pressure welding | 48 | CW | Joining of soft alloys such as copper and aluminium below their melting point | Electrical contacts |
Diffusion welding | 45 | DFW | No weld line visible | Titanium pump impellor wheels |
Explosion welding | 441 | EXW | Joining of dissimilar materials, e.g. corrosion resistant alloys to structural steels | Transition joints for chemical industry and shipbuilding. Bimetal pipelines |
Electromagnetic pulse welding | Tubes or sheets are accelerated by electromagnetic forces. Oxides are expelled during impact | Automotive industry, pressure vessels, dissimilar material joints | ||
Forge welding | (43) | FOW | The oldest welding process in the world. Oxides must be removed by flux or flames. | Damascus steel |
Friction welding | 42 | FRW | Thin heat affected zone, oxides disrupted by friction, needs sufficient pressure | Aerospace industry, railway, land transport |
Friction stir welding | 43 | FSW | A rotating non-consumable tool is traversed along the joint line | Shipbuilding, aerospace, railway rolling stock, automotive industry |
Friction stir spot welding | FSSW | A rotating non-consumable tool is plunged into overlapping sheets | Automotive industry | |
Hot pressure welding | HPW | Metals are pressed together at elevated temperatures below the melting point in vacuum or an inert gas atmosphere | Aerospace components | |
Hot isostatic pressure welding | 47 | HPW | A hot inert gas applies the pressure inside a pressure vessel, i.e. an autoclave | Aerospace components |
Roll welding | ROW | Bimetallic materials are joined by forcing them between two rotating wheels | Dissimilar materials | |
Ultrasonic welding | 41 | USW | High-frequency vibratory energy is applied to foils, thin metal sheets or plastics. | Solar industries-. Electronics. Rear lights of cars. Diapers. |
Name | N | AWS | Characteristics | Applications |
---|---|---|---|---|
Electron beam welding | 51 511 | EBW | Deep penetration, fast, high equipment cost | |
Electroslag welding | 72 | ESW | Welds thick workpieces quickly, vertical position, steel only, continuous consumable electrode | Heavy plate fabrication, construction, shipbuilding |
Flow welding (previously cast welding) | Distortion is minimized, and the thermal cycle is relatively benign. [7] [8] [9] [10] [11] | Joining rails in situ by liquid metal | ||
Induction welding | 74 | IW | ||
Laser beam welding | 521 522 | LBW | Deep penetration, fast, high equipment cost | Automotive industry |
Laser-hybrid welding | Combines LBW with GMAW in the same welding head, able to bridge gaps up to 2mm (between plates), previously not possible with LBW alone. | Automotive, Shipbuilding, Steelwork industries | ||
Percussion welding | 77 | PEW | Following an electrical discharge, pressure is applied which forges the materials together | Components of switch gear devices |
Thermite welding | 71 | TW | Exothermic reaction between aluminium powder and iron oxide powder | Railway tracks |
Electrogas welding | 73 | Continuous consumable electrode, vertical positioning, steel only | Storage tanks, shipbuilding | |
Stud arc welding | 78 | Welds studs to base material with heat and pressure | ||
Welding is a fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melt the parts together and allow them to cool, causing fusion. Common alternative methods include solvent welding using chemicals to melt materials being bonded without heat, and solid-state welding processes which bond without melting, such as pressure, cold welding, and diffusion bonding.
Arc may refer to:
A welder is a person or equipment that fuses materials together. The term welder refers to the operator, the machine is referred to as the welding power supply. The materials to be joined can be metals or varieties of plastic or polymer. Welders typically have to have good dexterity and attention to detail, as well as technical knowledge about the materials being joined and best practices in the field.
Shielded metal arc welding (SMAW), also known as manual metal arc welding, flux shielded arc welding or informally as stick welding, is a manual arc welding process that uses a consumable electrode covered with a flux to lay the weld.
Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a binding of the metals. It is a type of welding that uses a welding power supply to create an electric arc between a metal stick ("electrode") and the base material to melt the metals at the point of contact. Arc welding power supplies can deliver either direct (DC) or alternating (AC) current to the work, while consumable or non-consumable electrodes are used.
Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period and three of the sixth period. They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.
Gas tungsten arc welding is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atmospheric contamination by an inert shielding gas. A filler metal is normally used, though some welds, known as 'autogenous welds', or 'fusion welds' do not require it. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma.
Plasma arc welding (PAW) is an arc welding process similar to gas tungsten arc welding (GTAW). The electric arc is formed between an electrode and the workpiece. The key difference from GTAW is that in PAW, the electrode is positioned within the body of the torch, so the plasma arc is separated from the shielding gas envelope. The plasma is then forced through a fine-bore copper nozzle which constricts the arc and the plasma exits the orifice at high velocities and a temperature approaching 28,000 °C (50,000 °F) or higher.
Electric resistance welding (ERW) is a welding process in which metal parts in contact are permanently joined by heating them with an electric current, melting the metal at the joint. Electric resistance welding is widely used, for example, in manufacture of steel pipe and in assembly of bodies for automobiles. The electric current can be supplied to electrodes that also apply clamping pressure, or may be induced by an external magnetic field. The electric resistance welding process can be further classified by the geometry of the weld and the method of applying pressure to the joint: spot welding, seam welding, flash welding, projection welding, for example. Some factors influencing heat or welding temperatures are the proportions of the workpieces, the metal coating or the lack of coating, the electrode materials, electrode geometry, electrode pressing force, electric current and length of welding time. Small pools of molten metal are formed at the point of most electrical resistance as an electric current is passed through the metal. In general, resistance welding methods are efficient and cause little pollution, but their applications are limited to relatively thin materials.
A welding power supply is a device that provides or modulates an electric current to perform arc welding. There are multiple arc welding processes ranging from Shielded Metal Arc Welding (SMAW) to inert shielding gas like Gas metal arc welding (GMAW) or Gas tungsten arc welding (GTAW). Welding power supplies primarily serve as devices that allow a welder to exercise control over whether current is alternating current (AC) or direct current (DC), as well as the amount of current and voltage.
The weldability, also known as joinability, of a material refers to its ability to be welded. Many metals and thermoplastics can be welded, but some are easier to weld than others. A material's weldability is used to determine the welding process and to compare the final weld quality to other materials.
Atomic hydrogen welding is an arc welding process that uses an arc between two tungsten electrodes in a shielding atmosphere of hydrogen. The process was invented by Irving Langmuir in the course of his studies of atomic hydrogen. The electric arc efficiently breaks up the hydrogen molecules, which later recombine with tremendous release of heat, reaching temperatures from 3400 to 4000 °C. Without the arc, an oxyhydrogen torch can only reach 2800 °C. This is the third-hottest flame after dicyanoacetylene at 4987 °C and cyanogen at 4525 °C. An acetylene torch merely reaches 3300 °C. This device may be called an atomic hydrogen torch, nascent hydrogen torch or Langmuir torch. The process was also known as arc-atom welding.
A pipe is a tubular section or hollow cylinder, usually but not necessarily of circular cross-section, used mainly to convey substances which can flow — liquids and gases (fluids), slurries, powders and masses of small solids. It can also be used for structural applications; hollow pipe is far stiffer per unit weight than solid members.
A welding helmet is a type of personal protective equipment used in performing certain types of welding to protect the eyes, face, and neck from flash burn, sparks, infrared and ultraviolet light, and intense heat. The modern welding helmet used today was first introduced in 1937 by Willson Products.
Exothermic welding, also known as exothermic bonding, thermite welding (TW), and thermit welding, is a welding process that employs molten metal to permanently join the conductors. The process employs an exothermic reaction of a thermite composition to heat the metal, and requires no external source of heat or current. The chemical reaction that produces the heat is an aluminothermic reaction between aluminium powder and a metal oxide.
Percussion welding (PEW) is an arc welding process. The heat is obtained from an electric arc produced by short discharge of electrical energy while a percussive force is applied following the discharge. The heat generated by the discharge melts a thin area of metal on the faces of the work-pieces, and as the work-pieces are impacted they fuse to form a welded joint.
In metalworking, a welding defect is any flaw that compromises the usefulness of a weldment. There are many different types of welding defects, which are classified according to ISO 6520, while acceptable limits for welds are specified in ISO 5817 and ISO 10042.
In metalworking, a welding joint is a point or edge where two or more pieces of metal or plastic are joined together. They are formed by welding two or more workpieces according to a particular geometry. There are five types of joints referred to by the American Welding Society: butt, corner, edge, lap, and tee. These types may have various configurations at the joint where actual welding can occur.
Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) and metal active gas (MAG) is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which heats the workpiece metal(s), causing them to fuse. Along with the wire electrode, a shielding gas feeds through the welding gun, which shields the process from atmospheric contamination.
Gas blending is the process of mixing gases for a specific purpose where the composition of the resulting mixture is specified and controlled. A wide range of applications include scientific and industrial processes, food production and storage and breathing gases.