Filler metal

Last updated

In metalworking, a filler metal is a metal added in the making of a joint through welding, brazing, or soldering.

Contents

Soldering

Soldering and brazing processes rely on a filler metal added to the joint to form the junction between the base metal parts. Soft soldering uses a filler that melts at a lower temperature than the workpiece, often a lead-tin solder alloy. Brazing and hard soldering use a higher temperature filler that melts at a temperature which may approach that of the base metal, and which may form a eutectic alloy with the base metal.

Filler alloys have a lower melting point than the base metal, so that the joint may be made by bringing the whole assembly up to temperature without everything melting as one. Complex joints, typically for jewelry or live steam boilermaking, may be made in stages, with filler metals of progressively lower melting points used in turn. Early joints are thus not destroyed by heating to the later temperatures.

Welding

Welding processes work around the melting point of the base metal and require the base metal itself to begin melting. They usually require more precise distribution of heat from a small torch, as melting the entire workpiece is avoided by controlling the distribution of heat over space, rather than limiting the maximum heat. If filler is used, it is of a similar alloy and melting point to the base metal.

Not all welding processes require filler metal. Autogenous welding processes only require part of the existing base metal to be melted and this is sufficient, provided that the joint is already mechanically close-fitting before welding. Forge- or hammer welding uses hammering to close up the hot joint and also to locally increase its heat.

Many gas welding processes, such as lead burning, are typically autogenous and a separate wire filler rod of the same metal is only added if there is a gap to fill. Some metals, such as lead or Birmabright aluminium alloy, use offcut strips of the same metal as filler. Steels are usually welded with a filler alloy made specially for the purpose. To prevent rusting in storage, these wires are often lightly copper plated.

With electric arc welding, a major use for the filler rod is as a consumable electrode that also generates heat in the workpiece. An electrical discharge from this electrode provides heat that melts both the electrode and heats the base metal.

TIG welding is an electric welding process that uses a non-consumed tungsten electrode to provide heat, with the filler rod added manually. This is more like gas welding as a process, but with a different heat source.

Hardfacing

A specialist use for filler metal is where a deliberately different metal is to be deposited. This is often done for hardfacing excavating tools or digger bucket teeth. A hard, but more expensive and sometimes brittle, facing alloy is deposited onto the wear surfaces of mild steel tools.

Four types of filler metals existcovered electrodes, bare electrode wire or rod, tubular electrode wire, and welding fluxes. Sometimes non-consumable electrodes are included as well, but since these metals are not consumed by the welding process, they are normally excluded.

Usage

Covered electrodes

Covered electrodes are used extensively in shielded metal arc welding and are a major factor in that method's popularity.

Bare electrode wires

Bare electrode wires are used in gas metal arc welding and bare electrode rods are used in gas tungsten arc welding.

Tubular electrode wires

Tubular electrode wire is used in flux-cored arc welding.

Welding fluxes

Welding fluxes are used in submerged arc welding.

See also

Related Research Articles

<span class="mw-page-title-main">Welding</span> Fabrication or sculptural process for joining materials

Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as brazing and soldering, which do not melt the base metal.

<span class="mw-page-title-main">Shielded metal arc welding</span> Manual arc welding process

Shielded metal arc welding (SMAW), also known as manual metal arc welding, flux shielded arc welding or informally as stick welding, is a manual arc welding process that uses a consumable electrode covered with a flux to lay the weld.

<span class="mw-page-title-main">Submerged arc welding</span> Joining metals using electricity, beneath a granulated flux material

Submerged arc welding (SAW) is a common arc welding process. The first SAW patent was taken out in 1935. The process requires a continuously fed consumable solid or tubular electrode. The molten weld and the arc zone are protected from atmospheric contamination by being "submerged" under a blanket of granular fusible flux consisting of lime, silica, manganese oxide, calcium fluoride, and other compounds. When molten, the flux becomes conductive, and provides a current path between the electrode and the work. This thick layer of flux completely covers the molten metal thus preventing spatter and sparks as well as suppressing the intense ultraviolet radiation and fumes that are a part of the shielded metal arc welding (SMAW) process.

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

<span class="mw-page-title-main">Arc welding</span> Process used to fuse metal by using heat from an electrical arc

Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a binding of the metals. It is a type of welding that uses a welding power supply to create an electric arc between a metal stick ("electrode") and the base material to melt the metals at the point of contact. Arc welding power supplies can deliver either direct (DC) or alternating (AC) current to the work, while consumable or non-consumable electrodes are used.

<span class="mw-page-title-main">Flux (metallurgy)</span> Chemical used in metallurgy for cleaning or purifying molten metal

In metallurgy, a flux is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.

Forge welding (FOW), also called fire welding, is a solid-state welding process that joins two pieces of metal by heating them to a high temperature and then hammering them together. It may also consist of heating and forcing the metals together with presses or other means, creating enough pressure to cause plastic deformation at the weld surfaces. The process, although challenging, has been a method of joining metals used since ancient times and is a staple of traditional blacksmithing. Forge welding is versatile, being able to join a host of similar and dissimilar metals. With the invention of electrical welding and gas welding methods during the Industrial Revolution, manual forge-welding has been largely replaced, although automated forge-welding is a common manufacturing process.

Flux-cored arc welding is a semi-automatic or automatic arc welding process. FCAW requires a continuously-fed consumable tubular electrode containing a flux and a constant-voltage or, less commonly, a constant-current welding power supply. An externally supplied shielding gas is sometimes used, but often the flux itself is relied upon to generate the necessary protection from the atmosphere, producing both gaseous protection and liquid slag protecting the weld.

<span class="mw-page-title-main">Gas tungsten arc welding</span> Welding process

Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding, is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atmospheric contamination by an inert shielding gas. A filler metal is normally used, though some welds, known as autogenous welds, or fusion welds do not require it. When helium is used, this is known as heliarc welding. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma. TIG welding is most commonly used to weld thin sections of stainless steel and non-ferrous metals such as aluminum, magnesium, and copper alloys. The process grants the operator greater control over the weld than competing processes such as shielded metal arc welding and gas metal arc welding, allowing stronger, higher-quality welds. However, TIG welding is comparatively more complex and difficult to master, and furthermore, it is significantly slower than most other welding techniques. A related process, plasma arc welding, uses a slightly different welding torch to create a more focused welding arc and as a result is often automated.

<span class="mw-page-title-main">Plasma arc welding</span>

Plasma arc welding (PAW) is an arc welding process similar to gas tungsten arc welding (GTAW). The electric arc is formed between an electrode and the workpiece. The key difference from GTAW is that in PAW, the electrode is positioned within the body of the torch, so the plasma arc is separated from the shielding gas envelope. The plasma is then forced through a fine-bore copper nozzle which constricts the arc and the plasma exits the orifice at high velocities and a temperature approaching 28,000 °C (50,000 °F) or higher.

Electric resistance welding (ERW) is a welding process where metal parts in contact are permanently joined by heating them with an electric current, melting the metal at the joint. Electric resistance welding is widely used, for example, in manufacture of steel pipe and in assembly of bodies for automobiles. The electric current can be supplied to electrodes that also apply clamping pressure, or may be induced by an external magnetic field. The electric resistance welding process can be further classified by the geometry of the weld and the method of applying pressure to the joint: spot welding, seam welding, flash welding, projection welding, for example. Some factors influencing heat or welding temperatures are the proportions of the workpieces, the metal coating or the lack of coating, the electrode materials, electrode geometry, electrode pressing force, electric current and length of welding time. Small pools of molten metal are formed at the point of most electrical resistance as an electric current is passed through the metal. In general, resistance welding methods are efficient and cause little pollution, but their applications are limited to relatively thin materials.

Electrogas welding (EGW) is a continuous vertical position arc welding process developed in 1961, in which an arc is struck between a consumable electrode and the workpiece. A shielding gas is sometimes used, but pressure is not applied. A major difference between EGW and its cousin electroslag welding is that the arc in EGW is not extinguished, instead remains struck throughout the welding process. It is used to make square-groove welds for butt and t-joints, especially in the shipbuilding industry and in the construction of storage tanks.

<span class="mw-page-title-main">Oxy-fuel welding and cutting</span> Metalworking technique using a fuel and oxygen

Oxy-fuel welding and oxy-fuel cutting are processes that use fuel gases and oxygen to weld or cut metals. French engineers Edmond Fouché and Charles Picard became the first to develop oxygen-acetylene welding in 1903. Pure oxygen, instead of air, is used to increase the flame temperature to allow localised melting of the workpiece material in a room environment. A common propane/air flame burns at about 2,250 K, a propane/oxygen flame burns at about 2,526 K, an oxyhydrogen flame burns at 3,073 K and an acetylene/oxygen flame burns at about 3,773 K.

<span class="mw-page-title-main">Soldering</span> Process of joining metal pieces with heated filler metal

Soldering is a process of joining two metal surfaces together using a filler metal called solder. The soldering process involves heating the surfaces to be joined and melting the solder, which is then allowed to cool and solidify, creating a strong and durable joint.

In metalworking, a welding defect is any flaw that compromises the usefulness of a weldment. There is a great variety of welding defects. Welding imperfections are classified according to ISO 6520, while their acceptable limits are specified in ISO 5817 and ISO 10042.

<span class="mw-page-title-main">Gas metal arc welding</span> Industrial welding process

Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) and metal active gas (MAG) is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which heats the workpiece metal(s), causing them to fuse. Along with the wire electrode, a shielding gas feeds through the welding gun, which shields the process from atmospheric contamination.

<span class="mw-page-title-main">Lead burning</span> Lead burning

Lead burning is a welding process used to join lead sheet. It is a manual process carried out by gas welding, usually oxy-acetylene.

voestalpine Böhler Welding is a manufacturer of welding consumables, welding equipment and accessories with headquarters in Düsseldorf. The company owns over 50 subsidiaries in more than 25 countries, 2,300 employees, customers in approximately 150 countries and more than 1,000 distribution partners.

Autogenous welding is a form of welding in which the filler material is either supplied by melting the base material or is of identical composition. The weld may be formed entirely by melting parts of the base metal, and no additional filler rod is used.

<span class="mw-page-title-main">Aluminium joining</span>

Aluminium alloys are often used due to their high strength-to-weight ratio, corrosion resistance, low cost, high thermal and electrical conductivity. There are a variety of techniques to join aluminium including mechanical fasteners, welding, adhesive bonding, brazing, soldering and friction stir welding (FSW), etc. Various techniques are used based on the cost and strength required for the joint. In addition, process combinations can be performed to provide means for difficult-to-join assemblies and to reduce certain process limitations.

References