This article needs additional citations for verification .(November 2009) |
Plasma arc welding (PAW) is an arc welding process similar to gas tungsten arc welding (GTAW). The electric arc is formed between an electrode (which is usually but not always made of sintered tungsten) and the workpiece. The key difference from GTAW is that in PAW, the electrode is positioned within the body of the torch, so the plasma arc is separated from the shielding gas envelope. The plasma is then forced through a fine-bore copper nozzle which constricts the arc and the plasma exits the orifice at high velocities (approaching the speed of sound) and a temperature approaching 28,000 °C (50,000 °F) or higher.
Arc plasma is a temporary state of a gas. The gas gets ionized by electric current passing through it and it becomes a conductor of electricity. In ionized state, atoms are broken into electrons (−) and cations (+) and the system contains a mixture of ions, electrons and highly excited atoms. The degree of ionization may be between 1% and greater than 100% (possible with double and triple degrees of ionization). Such states exist as more electrons are pulled from their orbits.
The energy of the plasma jet and thus the temperature depends upon the electrical power employed to create arc plasma. A typical value of temperature obtained in a plasma jet torch is on the order of 28,000 °C (50,400 °F), compared to about 5,500 °C (9,930 °F) in ordinary electric welding arc. All welding arcs are (partially ionized) plasmas, but the one in plasma arc welding is a constricted arc plasma.
Just as oxy-fuel torches can be used for either welding or cutting, so too can plasma torches.
Plasma arc welding is an arc welding process wherein coalescence is produced by the heat obtained from a constricted arc setup between a tungsten/alloy tungsten electrode and the water-cooled (constricting) nozzle (non-transferred arc) or between a tungsten/alloy tungsten electrode and the job (transferred arc). The process employs two inert gases, one forms the arc plasma and the second shields the arc plasma. Filler metal may or may not be added.
The plasma arc welding and cutting process was invented by Robert M. Gage in 1953 and patented in 1957. The process was unique in that it could achieve precision cutting and welding on both thin and thick metals. It was also capable of spray coating hardening metals onto other metals. One example was the spray coating of the turbine blades of the moon bound Saturn rocket. [1]
Plasma arc welding is an advanced form of tungsten inert gas (TIG) welding. In the case of TIG, it is an open arc shielded by argon or helium, whereas plasma uses a special torch where the nozzle is used to constrict the arc while the shielding gas is separately supplied by the torch. The arc is constricted with the help of a water-cooled small diameter nozzle which squeezes the arc, increases its pressure, temperature and heat intensely and thus improves arc stability, arc shape and heat transfer characteristics.
Plasma arcs are formed using gas in two forms; laminar (low pressure and low flow) and turbulent (high pressure and high flow).
The gases used are argon, helium, hydrogen or a mixture of these. In the case of plasma welding, laminar flow (low pressure and low flow of plasma gas) is employed to ensure that the molten metal is not blown out of the weld zone.
The non-transferred arc (pilot arc) is employed during plasma-welding to initiate the welding process. The arc is formed between the electrode(-) and the water-cooled constricting nozzle (+). A non-transferred arc is initiated by using a high-frequency unit in the circuit. After the initial high-frequency start, the pilot arc (low current) is formed between the elect by employing a low current. After the main arc is struck, the nozzle is neutral or in case of welding-mesh using micro plasma, there can be an option given to have a continuous pilot arc. A transferred arc possesses high energy density and plasma jet velocity. Depending on the current used and flow of gas, it can be employed to cut and melt metals.
Microplasma uses current between 0.1 and 10 amps and is used foils, bellow, and thin sheets. This is an autogenous process and normally does not use filler wire or powder.
Medium plasma uses current between 10 and 100 amps and is used for higher-thickness plate welding with filler wire or autogenous up to 6 mm (0.24 in) plates and metal deposition (hardfacing) using specialised torches and powder feeders (PTA) using metal powders.
High-current plasma above 100 amps is used with filler wires welding at high travel speeds.
Other applications of plasma are plasma-cutting, heating, deposition of diamond films (Kurihara et al. 1989), material processing, metallurgy (production of metals and ceramics), plasma-spraying, and underwater cutting.
The equipment needed in plasma arc welding along with their functions are as follows:
Typical welding parameters for plasma arc welding are as follows:
Current 50 to 350 amps, voltage 27 to 31 volts, gas flow rates 2 to 40 liters/minute (lower range for orifice gas and higher range for outer shielding gas), direct current electrode negative (DCEN) is normally employed for plasma arc welding except for the welding of aluminum in which cases water-cooled electrode is preferable for reverse-polarity welding, i.e. direct-current electrode positive (DCEP).
For cutting purposes, a mixture of argon and hydrogen (10-30%) or that of nitrogen may be used. Hydrogen, because of its dissociation into atomic form and thereafter recombination generates temperatures above those attained by using argon or helium alone. In addition, hydrogen provides a reducing atmosphere, which helps in preventing oxidation of the weld and its vicinity. Care must be taken, as hydrogen diffusing into the metal can lead to embrittlement in some metals and steels.
The technique of work-piece cleaning and filler-metal addition is similar to that in TIG welding. Filler metal is added at the leading edge of the weld pool. Filler metal is not required in making root-pass weld.
Type of Joints: For welding work piece up to 25 mm thick, joints like square butt, J or V are employed. Plasma welding is used to make both key hole and non-key hole types of welds.
Making a non-key-hole weld: The process can make non-key-hole welds on work pieces having thickness 2.4 mm and under.
Making a keyhole welds: An outstanding characteristic of plasma arc welding, owing to exceptional penetrating power of plasma jet, is its ability to produce keyhole welds in work piece having thickness from 2.5 mm to 25 mm. A keyhole effect is achieved through right selection of current, nozzle-orifice diameter and travel speed, which create a forceful plasma jet to penetrate completely through the work piece. Plasma jet in no case should expel the molten metal from the joint. The major advantages of the keyhole technique are the ability to penetrate rapidly through relatively thick root sections and to produces a uniform under bead without mechanical backing. Also, the ratio of the depth of penetration to the width of the weld is much higher, resulting narrower weld and heat-affected zone. As the weld progresses, base metal ahead the keyhole melts, flow around the same solidifies and forms the weld bead. Key-holing aids deep penetration at faster speeds and produces high-quality bead. While welding thicker pieces, in laying others than root run, and using filler metal, the force of plasma jet is reduced by suitably controlling the amount of orifice gas.
Plasma arc welding is an advancement over the GTAW process. This process uses a non-consumable tungsten electrode and an arc constricted through a fine-bore copper nozzle. PAW can be used to join all metals that are weldable with GTAW (i.e., most commercial metals and alloys). Difficult-to-weld in metals by PAW include bronze, cast iron, lead and magnesium. Several basic PAW process variations are possible by varying the current, plasma gas-flow rate, and the orifice diameter, including:
At least two separate (and possibly three) flows of gas are used in PAW:
These gases can all be same, or of differing composition.
Depending upon the design of the torch (e.g., orifice diameter), electrode design, gas type and velocities, and the current levels, several variations of the plasma process are achievable, including:
When used for cutting, the plasma gas flow is increased so that the deeply penetrating plasma jet cuts through the material and molten material is removed as cutting dross. PAC differs from oxy-fuel cutting in that the plasma process operates by using the arc to melt the metal whereas in the oxy-fuel process, the oxygen oxidizes the metal and the heat from the exothermic reaction melts the metal. Unlike oxy-fuel cutting, the PAC process can be applied to cutting metals which form refractory oxides such as stainless steel, cast iron, aluminum and other non-ferrous alloys. Since PAC was introduced by Praxair Inc. at the American Welding Society show in 1954, many process refinements, gas developments, and equipment improvements have occurred.
Welding is a fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melt the parts together and allow them to cool, causing fusion. Common alternative methods include solvent welding using chemicals to melt materials being bonded without heat, and solid-state welding processes which bond without melting, such as pressure, cold welding, and diffusion bonding.
Shielded metal arc welding (SMAW), also known as manual metal arc welding, flux shielded arc welding or informally as stick welding, is a manual arc welding process that uses a consumable electrode covered with a flux to lay the weld.
Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a binding of the metals. It is a type of welding that uses a welding power supply to create an electric arc between a metal stick ("electrode") and the base material to melt the metals at the point of contact. Arc welding power supplies can deliver either direct (DC) or alternating (AC) current to the work, while consumable or non-consumable electrodes are used.
A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.
Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although other conductive metals may be cut as well. Plasma cutting is often used in fabrication shops, automotive repair and restoration, industrial construction, and salvage and scrapping operations. Due to the high speed and precision cuts combined with low cost, plasma cutting sees widespread use from large-scale industrial computer numerical control (CNC) applications down to small hobbyist shops.
An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma, which may produce visible light. An arc discharge is initiated either by thermionic emission or by field emission. After initiation, the arc relies on thermionic emission of electrons from the electrodes supporting the arc. An arc discharge is characterized by a lower voltage than a glow discharge. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".
A plasma torch is a device for generating a directed flow of plasma.
Flux-cored arc welding is a semi-automatic or automatic arc welding process. FCAW requires a continuously-fed consumable tubular electrode containing a flux and a constant-voltage or, less commonly, a constant-current welding power supply. An externally supplied shielding gas is sometimes used, but often the flux itself is relied upon to generate the necessary protection from the atmosphere, producing both gaseous protection and liquid slag protecting the weld.
Gas tungsten arc welding is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atmospheric contamination by an inert shielding gas. A filler metal is normally used, though some welds, known as 'autogenous welds', or 'fusion welds' do not require it. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma.
Shielding gases are inert or semi-inert gases that are commonly used in several welding processes, most notably gas metal arc welding and gas tungsten arc welding. Their purpose is to protect the weld area from oxygen, and water vapour. Depending on the materials being welded, these atmospheric gases can reduce the quality of the weld or make the welding more difficult. Other arc welding processes use alternative methods of protecting the weld from the atmosphere as well – shielded metal arc welding, for example, uses an electrode covered in a flux that produces carbon dioxide when consumed, a semi-inert gas that is an acceptable shielding gas for welding steel.
In metalworking, a filler metal is a metal added in the making of a joint through welding, brazing, or soldering.
Atomic hydrogen welding is an arc welding process that uses an arc between two tungsten electrodes in a shielding atmosphere of hydrogen. The process was invented by Irving Langmuir in the course of his studies of atomic hydrogen. The electric arc efficiently breaks up the hydrogen molecules, which later recombine with tremendous release of heat, reaching temperatures from 3400 to 4000 °C. Without the arc, an oxyhydrogen torch can only reach 2800 °C. This is the third-hottest flame after dicyanoacetylene at 4987 °C and cyanogen at 4525 °C. An acetylene torch merely reaches 3300 °C. This device may be called an atomic hydrogen torch, nascent hydrogen torch or Langmuir torch. The process was also known as arc-atom welding.
Carbon arc welding (CAW) is an arc welding process which produces coalescence of metals by heating them with an arc between a non-consumable carbon (graphite) electrode and the work-piece. It was the first arc-welding process developed but is not used for many applications today, having been replaced by twin-carbon-arc welding and other variations. The purpose of arc welding is to form a bond between separate metal pieces. In carbon-arc welding a carbon electrode is used to produce an electric arc between the electrode and the materials being bonded. This arc produces temperatures in excess of 3,000 °C. At this temperature the separate metals form a bond and become welded together.
Hyperbaric welding is the process of extreme welding at elevated pressures, normally underwater. Hyperbaric welding can either take place wet in the water itself or dry inside a specially constructed positive pressure enclosure and hence a dry environment. It is predominantly referred to as "hyperbaric welding" when used in a dry environment, and "underwater welding" when in a wet environment. The applications of hyperbaric welding are diverse—it is often used to repair ships, offshore oil platforms, and pipelines. Steel is the most common material welded.
Oxy-fuel welding and oxy-fuel cutting are processes that use fuel gases and oxygen to weld or cut metals. French engineers Edmond Fouché and Charles Picard became the first to develop oxygen-acetylene welding in 1903. Pure oxygen, instead of air, is used to increase the flame temperature to allow localized melting of the workpiece material in a room environment.
Hardfacing is a metalworking process where harder or tougher material is applied to a base metal. It is welded to the base material, and generally takes the form of specialized electrodes for arc welding or filler rod for oxyacetylene and gas tungsten arc welding. Powder metal alloys are used in plasma-transferred arc (PTA), also called powder plasma welding, and thermal spray processes like high-velocity oxygen fuel coating, plasma spray, spray and fuse, etc. Submerged arc welding, flux core arc welding (FCAW) and metal inert gas (MIG) / metal active gas (MAG) use continuously fed wire varying in diameter depending on the process and current. The strip cladding process uses strips from 50 mm wide to 125 mm with a thickness of 0.5mm. Open arc welding uses a continuously fed tubular electrode which may or may not contain flux.
Orbital welding is a specialized area of welding whereby the arc is rotated mechanically through 360° around a static workpiece, an object such as a pipe, in a continuous process. The process was developed to address the issue of operator error in gas tungsten arc welding processes (GTAW), to support uniform welding around a pipe that would be significantly more difficult using a manual welding process, and to ensure high quality repeatable welds that would meet more stringent weld criteria set by ASME. In orbital welding, computer-controlled process runs with little intervention from the operator.
Thermacut, Inc is an international corporation which designs, manufactures, and sells replacement torches, guns, consumables, and accessories for the metal cutting and welding industries. The company’s headquarters are located in Uherske Hradiste, Czech Republic. The company operates sales warehouses in the United States, Germany, and the Czech Republic along with sales offices located in Slovakia, Poland, Hungary, Croatia, Romania, Mexico Great Britain, Russia, China, France, and Brazil.
Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) and metal active gas (MAG) is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which heats the workpiece metal(s), causing them to fuse. Along with the wire electrode, a shielding gas feeds through the welding gun, which shields the process from atmospheric contamination.
Gas blending is the process of mixing gases for a specific purpose where the composition of the resulting mixture is specified and controlled. A wide range of applications include scientific and industrial processes, food production and storage and breathing gases.