Plasma torch

Last updated
A plasma torch cutter Plasma Cutter.jpg
A plasma torch cutter

A plasma torch (also known as a plasma arc, plasma gun, plasma cutter, or plasmatron) is a device for generating a directed flow of plasma. [1] [2] [3]

Contents

The plasma jet can be used for applications including plasma cutting, plasma arc welding, plasma spraying, and plasma gasification for waste disposal. [4]

Types

Thermal plasmas are generated in plasma torches by direct current (DC), alternating current (AC), radio-frequency (RF) and other discharges. DC torches are the most commonly used and researched, because when compared to AC: "there is less flicker generation and noise, a more stable operation, better control, a minimum of two electrodes, lower electrode consumption, slightly lower refractory [heat] wear and lower power consumption". [5]

Transferred vs. non-transferred

There are two types of DC torches: non-transferred and transferred. In non-transferred DC torches, the electrodes are inside the body/housing of the torch itself (creating the arc there). Whereas in a transferred torch one electrode is outside (and is usually the conductive material to be treated), allowing the arc to form outside of the torch over a larger distance.

A benefit of transferred DC torches is that the plasma arc is formed outside the water-cooled body, preventing heat loss—as is the case with non-transferred torches, where their electrical-to-thermal efficiency can be as low as 50%, but the hot water can itself be utilized. [6] Furthermore, transferred DC torches can be used in a twin-torch setup, where one torch is cathodic and the other anodic, which has the earlier benefit of a regular transferred single-torch system, but allows their use with non-conductive materials, as there is no need for it to form the other electrode. [5] However, these types of setups are rare as most common non-conductive materials do not require the precise cutting ability of a plasma torch. In addition, the discharge generated by this particular plasma source configuration is characterized by a complex shape and fluid dynamics that requires a 3D description in order to be predicted, making performance unsteady. The electrodes of non-transferred torches are larger, because they suffer more wear by the plasma arc.

The quality of plasma produced is a function of density (pressure), temperature and torch power (the greater the better). With regards to the efficiency of the torch itself—this can vary among manufacturers and torch technology; though for example, Leal-Quirós reports that for Westinghouse Plasma Corp. torches “a thermal efficiency of 90% is easily possible; the efficiency represents the percentage of arc power that exits the torch and enters the process”. [7]

Thermal plasma DC torches, non-transferred arc, hot cathode

Cross-sectional representation of a non-transferred DC plasma torch. Showing the pointed cathode and annular anode. The inlets and outlets of the water-cooling system are labelled, note that the arc temperature can be up to 15 000degC. The plasma arc is drawn for illustration purposes only. Not to scale. Non-transferred DC plasma torch.png
Cross-sectional representation of a non-transferred DC plasma torch. Showing the pointed cathode and annular anode. The inlets and outlets of the water-cooling system are labelled, note that the arc temperature can be up to 15 000°C. The plasma arc is drawn for illustration purposes only. Not to scale.

In a DC torch, the electric arc is formed between the electrodes (which can be made of copper, tungsten, graphite, silver etc.), and the thermal plasma is formed from the continual input of carrier/working gas, projecting outward as a plasma jet/flame (as can be seen in the adjacent image). In DC torches, the carrier gas can be, for example, either oxygen, nitrogen, argon, helium, air, or hydrogen; [5] and although termed such, it does not have to be a gas (thus, better termed a carrier fluid).

For example, a research plasma torch at the Institute of Plasma Physics (IPP) in Prague, Czech Republic, functions with an H2O vortex (as well as a small addition of argon to ignite the arc), and produces a high temperature/velocity plasma flame. [6] In fact, early studies of arc stabilization employed a water-vortex. [8] Overall, the electrode materials and carrier fluids have to be specifically matched to avoid excessive electrode corrosion or oxidation (and contamination of materials to be treated), while maintaining ample power and function.

Furthermore, the flow-rate of the carrier gas can be raised to promote a larger, more projecting plasma jet, provided that the arc current is sufficiently increased; and vice versa.

The plasma flame of a real plasma torch is a few inches long at most; it is to be distinguished from fictional long-range plasma weapons.

See also

Related Research Articles

<span class="mw-page-title-main">Inductively coupled plasma mass spectrometry</span> Type of mass spectrometry that uses an inductively coupled plasma to ionize the sample

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is known and used for its ability to detect metals and several non-metals in liquid samples at very low concentrations. It can detect different isotopes of the same element, which makes it a versatile tool in isotopic labeling.

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

<span class="mw-page-title-main">Corona discharge</span> Ionization of air around a high-voltage conductor

A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp. Corona discharges can also happen in weather, such as thunderstorms, where objects like ship masts or airplane wings have a charge significantly different from the air around them.

<span class="mw-page-title-main">Electrical breakdown</span> Conduction of electricity through an insulator under sufficiently high voltage

In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material, subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient voltage, electrical breakdown can occur within solids, liquids, or gases. However, the specific breakdown mechanisms are different for each kind of dielectric medium.

<span class="mw-page-title-main">Glow discharge</span>

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

<span class="mw-page-title-main">Plasma cutting</span> Process

Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although other conductive metals may be cut as well. Plasma cutting is often used in fabrication shops, automotive repair and restoration, industrial construction, and salvage and scrapping operations. Due to the high speed and precision cuts combined with low cost, plasma cutting sees widespread use from large-scale industrial computer numerical control (CNC) applications down to small hobbyist shops.

<span class="mw-page-title-main">Electric arc</span> Electrical breakdown of a gas that results in an ongoing electrical discharge

An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma, which may produce visible light. An arc discharge is initiated either by thermionic emission or by field emission. After initiation, the arc relies on thermionic emission of electrons from the electrodes supporting the arc. An arc discharge is characterized by a lower voltage than a glow discharge. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

<span class="mw-page-title-main">Electric arc furnace</span> Type of furnace

An electric arc furnace (EAF) is a furnace that heats material by means of an electric arc.

<span class="mw-page-title-main">Gas tungsten arc welding</span> Welding process

Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding, is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atmospheric contamination by an inert shielding gas. A filler metal is normally used, though some welds, known as 'autogenous welds', or 'fusion welds' do not require it. When helium is used, this is known as heliarc welding. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma. TIG welding is most commonly used to weld thin sections of stainless steel and non-ferrous metals such as aluminum, magnesium, and copper alloys. The process grants the operator greater control over the weld than competing processes such as shielded metal arc welding and gas metal arc welding, allowing stronger, higher-quality welds. However, TIG welding is comparatively more complex and difficult to master, and furthermore, it is significantly slower than most other welding techniques. A related process, plasma arc welding, uses a slightly different welding torch to create a more focused welding arc and as a result is often automated.

<span class="mw-page-title-main">Plasma arc welding</span> Welding process

Plasma arc welding (PAW) is an arc welding process similar to gas tungsten arc welding (GTAW). The electric arc is formed between an electrode and the workpiece. The key difference from GTAW is that in PAW, the electrode is positioned within the body of the torch, so the plasma arc is separated from the shielding gas envelope. The plasma is then forced through a fine-bore copper nozzle which constricts the arc and the plasma exits the orifice at high velocities and a temperature approaching 28,000 °C (50,000 °F) or higher.

A magnetohydrodynamic generator is a magnetohydrodynamic converter that transforms thermal energy and kinetic energy directly into electricity. An MHD generator, like a conventional generator, relies on moving a conductor through a magnetic field to generate electric current. The MHD generator uses hot conductive ionized gas as the moving conductor. The mechanical dynamo, in contrast, uses the motion of mechanical devices to accomplish this.

<span class="mw-page-title-main">Xenon arc lamp</span> Gas discharge lamp that produces intense white light

A xenon arc lamp is a highly specialized type of gas discharge lamp, an electric light that produces light by passing electricity through ionized xenon gas at high pressure. It produces a bright white light to simulate sunlight, with applications in movie projectors in theaters, in searchlights, and for specialized uses in industry and research. For instance, Xenon arc lamps with mercury lamps are the two most common lamps used in wide-field fluorescence microscopes.

<span class="mw-page-title-main">Thermal spraying</span> Coating process for applying heated materials to a surface

Thermal spraying techniques are coating processes in which melted materials are sprayed onto a surface. The "feedstock" is heated by electrical or chemical means.

Plasma gasification is an extreme thermal process using plasma which converts organic matter into a syngas which is primarily made up of hydrogen and carbon monoxide. A plasma torch powered by an electric arc is used to ionize gas and catalyze organic matter into syngas, with slag remaining as a byproduct. It is used commercially as a form of waste treatment, and has been tested for the gasification of refuse-derived fuel, biomass, industrial waste, hazardous waste, and solid hydrocarbons, such as coal, oil sands, petcoke and oil shale.

Plasma activation is a method of surface modification employing plasma processing, which improves surface adhesion properties of many materials including metals, glass, ceramics, a broad range of polymers and textiles and even natural materials such as wood and seeds. Plasma functionalization also refers to the introduction of functional groups on the surface of exposed materials. It is widely used in industrial processes to prepare surfaces for bonding, gluing, coating and painting. Plasma processing achieves this effect through a combination of reduction of metal oxides, ultra-fine surface cleaning from organic contaminants, modification of the surface topography and deposition of functional chemical groups. Importantly, the plasma activation can be performed at atmospheric pressure using air or typical industrial gases including hydrogen, nitrogen and oxygen. Thus, the surface functionalization is achieved without expensive vacuum equipment or wet chemistry, which positively affects its costs, safety and environmental impact. Fast processing speeds further facilitate numerous industrial applications.

<span class="mw-page-title-main">Spark ionization</span> Ionization method to produce gas phase ions from a solid sample

Spark ionization is a method used to produce gas phase ions from a solid sample. The prepared solid sample is vaporized and partially ionized by an intermittent discharge or spark. This technique is primarily used in the field of mass spectrometry. When incorporated with a mass spectrometer the complete instrument is referred to as a spark ionization mass spectrometer or as a spark source mass spectrometer (SSMS).

A microplasma is a plasma of small dimensions, ranging from tens to thousands of micrometers. Microplasmas can be generated at a variety of temperatures and pressures, existing as either thermal or non-thermal plasmas. Non-thermal microplasmas that can maintain their state at standard temperatures and pressures are readily available and accessible to scientists as they can be easily sustained and manipulated under standard conditions. Therefore, they can be employed for commercial, industrial, and medical applications, giving rise to the evolving field of microplasmas.

<span class="mw-page-title-main">Atomic emission spectroscopy</span> Analytical method using radiation to identify chemical elements in a sample

Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample. The wavelength of the atomic spectral line in the emission spectrum gives the identity of the element while the intensity of the emitted light is proportional to the number of atoms of the element. The sample may be excited by various methods.

Induction plasma, also called inductively coupled plasma, is a type of high temperature plasma generated by electromagnetic induction, usually coupled with argon gas. The magnetic field induces an electric current within the gas which creates the plasma. The plasma can reach temperatures up to 10,000 Kelvin. Inductive plasma technology is used in fields such as powder spheroidisation and nano-material synthesis. The technology is applied via an Induction plasma torch, which consists of three basic elements: the induction coil, a confinement chamber, and a torch head, or gas distributor. The main benefit of this technology is the elimination of electrodes, which can deteriorate and introduce contamination.

<span class="mw-page-title-main">Plasma (physics)</span> State of matter

Plasma is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars, but also dominating the rarefied intracluster medium and intergalactic medium. Plasma can be artificially generated, for example, by heating a neutral gas or subjecting it to a strong electromagnetic field.

References

  1. Jeffus, Larry F. (2002). Welding: principles and applications. Cengage Learning. p. 180. ISBN   978-1-4018-1046-7.
  2. Szałatkiewicz, J. (2017). "Safety and intelligent control system for plasmatron application". Journal of KONES Powertrain and Transport. 24 (247–252): 6. doi:10.5604/01.3001.0010.2942 (inactive 31 January 2024).{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link)
  3. "Energy Recovery from Waste of Printed Circuit Boards in Plasmatron Plasma Reactor". Polish Journal of Environmental Studies. 23 (1): 277–281.
  4. Szałatkiewicz, J. (2014). "Energy Recovery from Waste of Printed Circuit Boards in Plasmatron Plasma Reactor" (PDF). Polish Journal of Environmental Studies. 23 (1): 5.
  5. 1 2 3 Gomez, E.; Rani, D.A.; Cheeseman, C.R.; Deegan, D.; Wise, M.; Boccaccini, A.R. (2009). "Thermal plasma technology for the treatment of wastes: A critical review". Journal of Hazardous Materials. 161 (2–3): 614–626. doi:10.1016/j.jhazmat.2008.04.017. PMID   18499345. S2CID   206069219.
  6. 1 2 Hrabovský, Milan; Kopecky, V.; Sember, V.; Kavka, T.; Chumak, O.; Konrad, M. (August 2006). "Properties of Hybrid Water/Gas DC Arc Plasma Torch". IEEE Transactions on Plasma Science. 34 (4): 1566–1575. Bibcode:2006ITPS...34.1566H. doi:10.1109/TPS.2006.878365. S2CID   36444561.
  7. Leal-Quirós, Edbertho (2004). "Plasma Processing of Municipal Solid Waste". Brazilian Journal of Physics. 34 (4B): 1587. Bibcode:2004BrJPh..34.1587L. doi: 10.1590/S0103-97332004000800015 .
  8. Kavka, T; Chumak, O.; Sember, V.; Hrabovsky, M. (July 2007). "Processes in Gerdien arc generated by hybrid gas-water torch". 28th ICPIG.