Ceramic mold casting

Last updated

Ceramic mold casting, also known ambiguously as ceramic molding, [1] is a group of metal casting processes that use ceramics as the mold material. It is a combination of plaster mold casting and investment casting. [2] [3] There are two types of ceramic mold casting: the Shaw process and the Unicast process. [4]

Contents

These casting processes are commonly used to make tooling, especially drop forging dies, but also injection molding dies, die casting dies, glass molds, stamping dies, and extrusion dies. [3]

Shaw process

The Shaw process, also known as the Osborn-Shaw process, uses a mixture of refractory aggregate, hydrolyzed ethyl silicate, alcohol, and a gelling agent to create a mold. This slurry mixture is poured into a slightly tapered flask and a reusable pattern (i.e. the item used to create the shape of the mold) is used. The slurry hardens almost immediately to a rubbery state (the consistency of vulcanized rubber). The flask and pattern is then removed. Then a torch is used to ignite the mold, which causes most of the volatiles to burn-off and the formation of ceramic microcrazes (microscopic cracks). These cracks are important, because they allow gases to escape while preventing the metal from flowing through; they also ease thermal expansion and contraction during solidification and shrinkage. After the burn-off, the mold is baked at 1,800 °F (980 °C) to remove any remaining volatiles. Prior to pouring metal, the mold is pre-warmed to control shrinkage. [2] [3]

Unicast process

The Unicast process is very similar to the Shaw process, except it does not require the mold to be ignited and then be cured in a furnace. Instead, the mold is partially cured so the pattern can be removed and it is then completely cured by firing it at approximately 1,900 °F (1,040 °C). If a metal with a low melting point is cast then the firing can be skipped, because the mold has enough strength in the "green state" (un-fired). [5]

Characteristics

The main advantages of ceramic molds are: a reusable pattern (the item used to create the shape of the mold), excellent surface finish, close dimensional tolerances, thin cross-sections, and intricate shapes can be cast. For undercuts and other difficult to cast features, part of the pattern can be made from wax in conjunction with a standard pattern; essentially using investment and ceramic mold casting techniques together. The main disadvantages are: it is only cost effective for small- to medium-sized production runs and the ceramic is not reusable. Ferrous and high-temperature non-ferrous are most commonly cast with these processes; other materials cast include: aluminum, copper, magnesium, titanium, and zinc alloys. [1] [2] [4]

Weight limits are 100 grams to several thousand kilograms (3.5 oz to several tons). Cross-sections as thin as 1.3 mm (0.051 in) are possible, with no upper limit. Typical tolerances are 0.1 mm for the first 25 mm (0.005 in for the first inch) and 0.003 mm per additional mm (0.003 in per each additional in). A draft of 1° is typically required. The typical surface finish is 2–4 um (75–150 uin) RMS. [2]

See also


Related Research Articles

<span class="mw-page-title-main">Metal casting</span> Pouring liquid metal into a mold

In metalworking and jewelry making, casting is a process in which a liquid metal is delivered into a mold that contains a negative impression of the intended shape. The metal is poured into the mold through a hollow channel called a sprue. The metal and mold are then cooled, and the metal part is extracted. Casting is most often used for making complex shapes that would be difficult or uneconomical to make by other methods.

<span class="mw-page-title-main">Molding (process)</span> Shaping a liquid or plastic material by making it conform to a more rigid mold

Molding or moulding is the process of manufacturing by shaping liquid or pliable raw material using a rigid frame called a mold or matrix. This itself may have been made using a pattern or model of the final object.

<span class="mw-page-title-main">Lost-wax casting</span> Process by which a duplicate metal sculpture is cast from an original sculpture

Lost-wax casting is the process by which a duplicate metal sculpture is cast from an original sculpture. Intricate works can be achieved by this method.

<span class="mw-page-title-main">Sand casting</span> Metal casting process using sand as the mold material

Sand casting, also known as sand molded casting, is a metal casting process characterized by using sand as the mold material. The term "sand casting" can also refer to an object produced via the sand casting process. Sand castings are produced in specialized factories called foundries. Over 60% of all metal castings are produced via sand casting process.

<span class="mw-page-title-main">Riser (casting)</span>

A riser, also known as a feeder, is a reservoir built into a metal casting mold to prevent cavities due to shrinkage. Most metals are less dense as a liquid than as a solid so castings shrink upon cooling, which can leave a void at the last point to solidify. Risers prevent this by providing molten metal to the casting as it solidifies, so that the cavity forms in the riser and not the casting. Risers are not effective on materials that have a large freezing range, because directional solidification is not possible. They are also not needed for casting processes that utilized pressure to fill the mold cavity.

<span class="mw-page-title-main">Lost-foam casting</span> Type of evaporative-pattern casting process

Lost-foam casting (LFC) is a type of evaporative-pattern casting process that is similar to investment casting except foam is used for the pattern instead of wax. This process takes advantage of the low boiling point of polymer foams to simplify the investment casting process by removing the need to melt the wax out of the mold.

Ceramic forming techniques are ways of forming ceramics, which are used to make everything from tableware such as teapots to engineering ceramics such as computer parts. Pottery techniques include the potter's wheel, slip casting and many others.

<span class="mw-page-title-main">Metal injection molding</span> Metalworking process in which finely-powdered metal is mixed with binder material

Metal injection molding (MIM) is a metalworking process in which finely-powdered metal is mixed with binder material to create a "feedstock" that is then shaped and solidified using injection molding. The molding process allows high volume, complex parts to be shaped in a single step. After molding, the part undergoes conditioning operations to remove the binder (debinding) and densify the powders. Finished products are small components used in many industries and applications.

<span class="mw-page-title-main">Foundry</span> Factory that produces metal castings

A foundry is a factory that produces metal castings. Metals are cast into shapes by melting them into a liquid, pouring the metal into a mold, and removing the mold material after the metal has solidified as it cools. The most common metals processed are aluminum and cast iron. However, other metals, such as bronze, brass, steel, magnesium, and zinc, are also used to produce castings in foundries. In this process, parts of desired shapes and sizes can be formed.

<span class="mw-page-title-main">Investment casting</span> Industrial process based on lost-wax casting

Investment casting is an industrial process based on lost-wax casting, one of the oldest known metal-forming techniques. The term "lost-wax casting" can also refer to modern investment casting processes.

<span class="mw-page-title-main">Pattern (casting)</span>

In casting, a pattern is a replica of the object to be cast, used to prepare the cavity into which molten material will be poured during the casting process.

Semi-solid metal casting (SSM) is a near net shape variant of die casting. The process is used today with non-ferrous metals, such as aluminium, copper, and magnesium, but also can work with higher temperature alloys for which no currently suitable die materials are available. The process combines the advantages of casting and forging. The process is named after the fluid property thixotropy, which is the phenomenon that allows this process to work. Simply, thixotropic fluids flow when sheared, but thicken when standing. The potential for this type of process was first recognized in the early 1970s. There are three different processes: thixocasting, rheocasting, thixomolding. SIMA refers to a specialized process to prepare aluminum alloys for thixocasting using hot and cold working.

Permanent mold casting is a metal casting process that employs reusable molds, usually made from metal. The most common process uses gravity to fill the mold, however gas pressure or a vacuum are also used. A variation on the typical gravity casting process, called slush casting, produces hollow castings. Common casting metals are aluminium, magnesium, and copper alloys. Other materials include tin, zinc, and lead alloys and iron and steel are also cast in graphite molds.

<span class="mw-page-title-main">Full-mold casting</span>

Full-mold casting is an evaporative-pattern casting process which is a combination of sand casting and lost-foam casting. It uses an expanded polystyrene foam pattern which is then surrounded by sand, much like sand casting. The metal is then poured directly into the mold, which vaporizes the foam upon contact.

The ceramic molding process is a production method which guarantees the precision required, and also gives a good surface finish, using a high temperature method to better structure and shape parts. This process also gives a low grade of toleration.

Plaster mold casting is a metalworking casting process similar to sand casting except the molding material is plaster of Paris instead of sand. Like sand casting, plaster mold casting is an expendable mold process, however it can only be used with non-ferrous materials. It is used for castings as small as 30 g (1 oz) to as large as 7–10 kg (15–22 lb). Generally, the form takes less than a week to prepare. Production rates of 1–10 units/hr can be achieved with plaster molds.

<span class="mw-page-title-main">Casting</span> Manufacturing process in which a liquid is poured into a mold to solidify

Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a casting, which is ejected or broken out of the mold to complete the process. Casting materials are usually metals or various time setting materials that cure after mixing two or more components together; examples are epoxy, concrete, plaster and clay. Casting is most often used for making complex shapes that would be otherwise difficult or uneconomical to make by other methods. Heavy equipment like machine tool beds, ships' propellers, etc. can be cast easily in the required size, rather than fabricating by joining several small pieces. Casting is a 7,000-year-old process. The oldest surviving casting is a copper frog from 3200 BC.

Shell molding, also known as shell-mold casting, is an expendable mold casting process that uses resin covered sand to form the mold. As compared to sand casting, this process has better dimensional accuracy, a higher productivity rate, and lower labour requirements. It is used for small to medium parts that require high precision. Shell molding was developed as a manufacturing process during the mid-20th century in Germany. It was invented by German engineer Johannes Croning. Shell mold casting is a metal casting process similar to sand casting, in that molten metal is poured into an expendable mold. However, in shell mold casting, the mold is a thin-walled shell created from applying a sand-resin mixture around a pattern. The pattern, a metal piece in the shape of the desired part, is reused to form multiple shell molds. A reusable pattern allows for higher production rates, while the disposable molds enable complex geometries to be cast. Shell mold casting requires the use of a metal pattern, oven, sand-resin mixture, dump box, and molten metal.

A core is a device used in casting and moulding processes to produce internal cavities and reentrant angles. The core is normally a disposable item that is destroyed to get it out of the piece. They are most commonly used in sand casting, but are also used in die casting and injection moulding.

<span class="mw-page-title-main">Centrifugal casting (industrial)</span> Casting technique that is typically used to cast thin-walled cylinders

Centrifugal casting or rotocasting is a casting technique that is typically used to cast thin-walled cylinders. It is typically used to cast materials such as metals, glass, and concrete. A high quality is attainable by control of metallurgy and crystal structure. Unlike most other casting techniques, centrifugal casting is chiefly used to manufacture rotationally symmetric stock materials in standard sizes for further machining, rather than shaped parts tailored to a particular end-use.

References

  1. 1 2 Metal Casting Techniques - Ceramic Molding w.engineershandbook.com/MfgMethods/ceramicmolding.htm, archived from the original on 2007-10-25, retrieved 2010-12-15.
  2. 1 2 3 4 Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, pp. 315–316, ISBN   0-471-65653-4.
  3. 1 2 3 Elanchezhian, C.; Ramnath, B. Vijaya (2006). Manufacturing Technology (2nd ed.). Laxmi Publications. pp. 80–81. ISBN   978-81-7008-943-8.
  4. 1 2 Blair, Malcolm; Stevens, Thomas L. (1995). Steel Castings Handbook. Steel Founders' Society of America. p. 13‐13. ISBN   978-0-87170-556-3.
  5. The Unicast process, archived from the original on 2011-07-17, retrieved 2010-12-19.